
Benchmarking in HPC
One person/site’s experience

James H. Davenport
thanks to

Steven Chapman, Roshan Mathew (Bath),
Jessica Jones (Southampton)

University of Bath

20 April 2016



Why benchmark?

To ensure that you buy the best-performing machine for the
workloads your users will run over the next three+ years!
In an ideal world

I You would know all the codes your users will run over the next
three+ years

I (and in which proportion)

I You will get the vendors to benchmark them all on candidate
machines

I You compute a weighted sum to give each machine a
performance figure

But Your crystal ball may be down for long-term maintenance



How to benchmark?

Not having a time machine!

I we look at the workloads users are currently running

But these are varied, not well documented, probably not
portable

And the manufacturers aren’t going to put in the effort
(nor are the majority of the users)

JHD estimates he gets 1–2 weeks of manufacturer effort
for a £1M tender

Very different if you’re a flagship national contract

So what can/should one do?



Linpack benchmark

Standard underpins the TOP 500 list etc.

Useful for bragging rights: probably produces the highest
performance number you’ll ever see (because
manufacturers, compiler writers, library writers all
tune for it)

Probably the only benchmark you have that stresses the whole
machine (useful for testing cooling etc.)

However unlikely to be representative



Being more realistic

What we’d like to measure is not what we can measure.

? so you have to extrapolate

?? which is a much fancier term than guessing

– You may not know with sufficient detail what your users’
codes are

– The vendor may be unwilling/unable to benchmark your codes

+ So maybe benchmark a subset

Or use the LLNL proxy codes:
https://codesign.llnl.gov/proxy-apps.php

2016+ I’d probably use a mixture

https://codesign.llnl.gov/proxy-apps.php


Other tips

I benchmark with Turbo off: CPU speed is just too variable
with Turbo on

I You can’t just “benchmark Ansys” (or Gaussian, or any other
big package): the performance varies drastically depending on
which parts your users are exercising

I (assuming it’s software your users want) insist on being
provided with the build scripts as well as the binaries

� It’s all too easy to end up with “the new version is
significantly slower than the old”



Benchmarking your machine

Re-run the benchmarks on your machine as delivered: Bath had
some surprises here

I Vendor supplied single-rank DIMMs, but had benchmarked on
double-rank DIMMs

I This showed up on our memory-intensive benchmark (VASP):
too slow by 10%; also with ANSYS

I Vendor then moved the single-rank memory onto half the
nodes (taking them from 64G to 128G) and supplied 64G of
double-rank for the emptied nodes (therefore 5TB of extra
memory)

I Also discovered a Phi card, one out of four, was
under-performing (power supply issue)

I And the build scripts they’d supplied weren’t the ones they’d
actually used



Slow Nodes

A regiment marches as fast as the most footsore soldier
— Duke of Wellington

Experience says that not all nodes actually perform as specified.
This matters for the Wellington reason, so they need to be weeded
out pre-acceptance.

Causes Nodes themselves (BIOS, thermal protection,
memory), IB cables, IB switches (but causes
generally irrelevant to purchaser)

Method Run lots of smallish (4-node) jobs and look at
outlying run times

If possible Use scheduler to allocate nodes

else do statistics on reported node numbers

Jobs should be memory intensive; CPU intensive; network
intensive (Jessica has four different jobs)



Rebenchmark??

DoE rerun their benchmarks every (10,000 jobs, X000
hours, . . . ) to check for performance drift

SC15 had a debate on “how often” — no consensus

JHD doesn’t know of anyone else currently doing this

But is looking to do it annually at Bath



Conclusions

I Benchmarking is not easy

I Bath spent an elapsed six weeks (1 week JHD time) writing
the benchmarking section of the OJEU

I But well worthwhile in terms of the quality of what you end
up with

I And actually gets you closer to your users

I And (possibly) to your vendors


