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What is Time Series Data?

A time series is a set of observations made sequentially through
time.

Examples:
• Changes in execution time, RAM or bandwidth usage.
• Times a software has run in consecutive periods of time.
• Financial, geophysical, marketing, demographic, etc.

The objectives in time series analysis are:
Description How does the data vary over time?
Explanation What causes the observed variation?
Prediction What are the future values of the series?
Control Aim to improve control over the process.



Common Questions

Q: How important is preserving
data order?

A: Very! Changing data order
breaks the dependence
between measurements.

Q: How frequent do I need to take
measurements?

A: It depends:

• Too sparse, risk missing the
dependence structure.

• Too frequent, swamped with noise.
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Figure: Sampling Frequency



Why is time series important in
benchmarking?

Q: Can I use simple summary
statistics?

A: You can, but they only
describe overall properties.

Q: Can’t I just interpolate
between data points?

A: Signals are often subject to
uncontrollable random noise.
Error from interpolation may
be large if noise is large.
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Figure: Three times series with
x̄ = 0 and s2 = 1.



Analysis Tools – Trace Plot

A trace plot is a graph of the measurements against time.

Easy to visually identify key features:

• Trends – Long-term trend in the mean level.

• Seasonality – Regular peaks & falls in the measurements.

• Outliers – Unusual measurements that are inconsistent with
the rest of the data.

• Discontinuities – Abrupt change to the underlying process.



Analysis Tools – Auto-correlation function

Correlation measures the
linear dependence between two
data sets.

Auto-correlation measures the
correlation between all data
pairs at lag k apart.

rk =

∑T−k
t=1 (xt − x̄)(xt+k − x̄)

(T − 1)s2 ,

where x̄ and s2 is the sample
mean and variance.

Figure: Lag 5 ACF calculation.



Analysis Tools – Spectrum

The spectrum describes how
the power in a time series
varies across frequencies.

I(ω) =
1
πT

∣∣∣∣∣
T∑

t=1

xtei2πtω

∣∣∣∣∣
2

,

for ω ∈ (0,1/2].

Identifies prominent seasonal
and cyclic variation.
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Figure: Fourier decomposition and
spectrum of time series Xt .



Time series models

Let X1:T = {X1, . . . ,XT} denote a sequence of T measurements.

A time series is stationary if the distribution of any pair of subset
separated by lag k , X1:t and X1+k ,t+k , are the same.

A time series is weakly stationary if the first two moments are
constant over time:

E[Xt ] = µ and Cov(Xt ,Xt+k ) = γ(k).

Gaussian White Noise Process, GWNP

The time series {Zt} follows a Gaussian white noise process if:

Zt ∼ N (0, σ2), t = 1, . . . ,T



Gaussian White Noise Process

Figure: Gaussian white noise process.



MA(q) process

Moving Average Process of Order q, MA(q)

The process {Xt} is a moving average process of order q if:

Xt = β0Zt + β1Zt−1 + · · ·+ βqZt−q

where {Zt} is a GWNP and β0, . . . , βq are constants (β0 = 1).

Expectation: E[Xt ] = 0.

Auto-covariance:

Cov(Xt ,Xt+k ) =

{
σ2∑q−|k |

i=0 βiβi+|k |, |k | = 0, . . . ,q;
0, otherwise.



MA(q) process

Figure: Left: MA(1), β1 = 0.9. Right: MA(2), (β1, β2) = (−0.4,0.9).



AR(p) process

Autoregressive Process of Order p, AR(p)

The process {Yt} is an autoregressive process of order p if:

Yt = α1Yt−1 + · · ·+ αpYt−p + Zt

where {Zt} is a GWNP and α1, . . . , αp are constants.

Expectation: E[Xt ] = 0.

Auto-covariance for AR(1):

Cov(Xt ,Xt+k ) = σ2 α
|k |
1

1− α2
1
, provided |α1| < 1.



AR(p) process

Figure: Left: AR(1), α1 = 0.9. Right: AR(2), (α1, α2) = (0.8,−0.64).



Non-stationary process
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Figure: Examples of non-stationary processes.



On-going Research in Time Series
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Figure: Keyword cloud from the Journal of Time Series Analysis,
2002–2015. Red: Models, Navy: Properties, Grey: Inference &
Methods



Further Reading

• Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (2008) Time
series analysis: Forecasting and control. 4th ed., John
Wiley & Sons.

• Chatfield, C. (2004) The Analysis of Time Series: An
Introduction. 6th ed., CRC press.

• Signal processing toolbox, MATLABr

(http://uk.mathworks.com/products/signal/)

• Statsmodels, python
(http://statsmodels.sourceforge.net/)
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