
Record Data Structures in Racket
Usage Analysis and Optimization

Tobias Pape
Hasso Plattner Institute
Universtiy of Potsdam

tobias.pape@hpi.uni-
potsdam.de

Vasily Kirilichev
Hasso Plattner Institute
Universtiy of Potsdam

vasilii.kirilichev@hpi-
alumni.de

Carl Friedrich Bolz
Software Development Team

King’s College London
cfbolz@gmx.de

Robert Hirschfeld
Hasso Plattner Institute
Universtiy of Potsdam
hirschfeld@hpi.uni-

potsdam.de

ABSTRACT
Built-in data structures are a key contributor to the performance
of dynamic languages. Record data structures, or records, are one
of the common advanced, but not easily optimizable built-in data
structures supported by those languages. Records may be used in an
object-oriented fashion or to implement object orientation itself.

In this paper, we analyze how records are used in different appli-
cations in the Scheme dialect Racket. Based on the data obtained,
we suggest the application of existing optimization techniques for
records and devise a new one for immutable boolean fields. Most
of them can be applied to a wide range of record implementations
in dynamic languages. We apply these optimizations to records in
Pycket, an implementation of Racket. With one exception, micro-
benchmarks show a two- to ten-fold speed-up of our implementation
over plain Racket.

CCS Concepts
•Information systems→Record and block layout; •Software and
its engineering → Data types and structures; Classes and ob-
jects; Just-in-time compilers;

Keywords
Record data structures; Objects; Racket; Optimization

1. INTRODUCTION
For programming language implementations, performance is often
key and, among other aspects, built-in data structures contribute to
the overall performance of a language implementation. The lack of
optimization of built-in data structures may result in poor perfor-
mance and increased memory consumption of dynamic languages [2,
18]. In the context of modern virtual machine (vm) development
frameworks, such as RPython, some data structures, such as collec-
tions [5], are already in the focus of research.

Copyright is held by the authors. This work is based on an earlier work:
SAC’16 Proceedings of the 2016 ACM Symposium on Applied Computing,
Copyright 2016 ACM 978-1-4503-3739-7.
http://dx.doi.org/10.1145/2851613.2851732

Record data structures or records are one of the advanced common
built-in data structures, which are not deeply investigated in the sense
of optimizations for modern vms. Basically, records aggregate het-
erogeneously typed, named fields, possibly with a definition in a
record type. In some languages, such as Racket, records may not
only be used to store the data, but have additional features. Racket is
a dynamic multi-paradigm Scheme-family programming language
with powerful built-in record data structures, where records can be-
have like objects of a class or even like a function. Records also
often provide identity, encapsulation, abstraction, and maybe behav-
ior, thus providing key ingredients for object orientation. In fact,
records can be used to implement object-oriented features, such as
the class-based object orientation in Racket [13].

A simple, straight-forward implementation of records for dynami-
cally typed languages implies a big overhead because of the seman-
tics complexity. It is more important for the implementation to be
simple than the interface. Thus, many languages prefer the “worse-
is-better” approach [14], whereby the simplicity and efficiency of
implementation are more important than the straightforward follow-
ing the semantics and perfect correctness. Our analysis shows that, at
least for the Racket language, records have a noticeable optimization
potential. In this work, we consider an efficient implementation of
records for dynamic languages and for Racket in particular. We focus
on the RPython-based implementation named Pycket.

In this work, we make the following contributions:

• We analyse and evaluate the usage of record data structures in
Racket applications (section 3).

• We identify applicable optimization techniques for the effi-
cient implementation of record data structures (section 4).
In particular, we propose a novel optimization technique for
static immutable boolean fields in record data structures (sec-
tion 4.3).

• We implement Racket’s record data structures with optimiza-
tions and evaluate performance results (section 5 and 6).

2. BACKGROUND
Record data structures, or records, are collections of named fields of
heterogeneous values. Records may form a type, instances of record

http://dx.doi.org/10.1145/2851613.2851732

Listing 1: Racket structures using structure hierarchies, explicit
mutability, callable structures, and prefabs.
1 (struct person (name))

2 (define customer (person "Sam Adams"))

3 (struct employee person (position [salary #:mutable])

4 #:property prop:procedure

5 (lambda (self) (* (employee-salary self) 0.146)))

6

7 (define worker (employee "John Smith" "Developer" 50000))

8 (person? 0) ; -> #f

9 (person? customer) ; -> #t

10 (person? worker) ; -> #t

11 (employee? customer) ; -> #f

12 (employee? worker) ; -> #t

13

14 (set-employee-salary! worker 55000)

15 (employee-salary worker) ; -> 55000

16

17 (worker) ; -> 7300

18

19 (define john-station

20 '#s(workstation "station01" "fd23:5e15:aa18::2" 5))

21 (struct workstation (name ip age) #:prefab)

22 (workstation? john-station) ; -> #t

types are typically of equal size—all in contrast to data structures like
arrays that are collections of typically indexed fields of homogenous
values. Array-like data structures do not form types. Individual arrays
may differ in size. Moreover records may have various additional
features, which may differ between programming languages.

2.1 Structures in Racket
Racket [12] is a dynamically typed, multi-paradigm programming
language from the Scheme-family [21]. Racket differs from Scheme
in certain aspects such as immutable-by-default lists, built-in support
for design by contract [17], or a more complex record data structure
concept called structures (or structs), providing features beyond the
mere ability to store values in their fields.

Racket structure types can form hierarchies, supporting inheritance.
Structures in Racket are immutable by default, but can be explicitly
declared to be partly or fully mutable. Structure type properties allow
to store arbitrary data inside the structure type. However, typically
properties are used for procedures that work on a structure’s field
values. Certain properties can be used to make structure instances
callable; these structures can then act like procedures. Other prop-
erties denote structures as transparent, allowing run-time reflection
on a structure’s internals. Racket also supports a shortcut form of
structures for literal specification of structures before the formal in-
troduction of their structure type. These structure types are called
previously fabricated structure types (prefabs).

The example in listing 1 contains two structure instances: a person

named “Sam Adams”, bound to customer in line 2. The correspond-
ing structure type person is defined in line 1 as structure with one
field, name. The predicate person? further down confirms this. The
second structure instance bound to worker in line 7 is an employee

named “John Smith” (name) in the “Developer” position (position)
who earns 50 000 money (salary). The structure type employee, de-
fined in line 3, makes use of structure hierarchies— it is a sub-type
of person and inherits its name field. Moreover, it has a mutable field
salary. Hence, the mutator set-employee-salary! further down can
be used to update the field. The accessor employee-salary can be

used to retrieve the stored value. Then, the structure type has a prop-
erty named prop:procedure that is bound to a procedure. That way,
calling the worker structure instance in the last line results in the
procedure to be called with this instance and computes the amount of
medical insurance fee based on the salary and the fixed rate. Lastly,
john-station is defined as a prefab structure in line 20, without the
need (but possibility) to define the structure type workstation before-
hand. However, such a structure type can be defined after the fact,
as in the line following. The predicate workstation? confirms that,
indeed, john-station is of the expected structure type.

2.2 Structures and Objects
Scheme is a multi-paradigm language family that is probably best
known for its functional aspects. However, object-orientation is not
only possible to implement and use, for example with Common
Lisp Object System (clos) implementations such as TinyCLOS, in
Racket an object-oriented (oo) implementation is readily available
with the racket/class standard library. It provides class-based object
orientation with message passing, mixins, and traits [13]. This system
is implemented in terms of Racket structures; every class is also a
structure type, every object is a structure instance. While it would
have been possible to focus solely on the object-oriented part of
Racket, considering all structures instead benefits the implementation
of object orientation as well as other parts of Racket.

Racket structures actually can directly be used in an object-oriented
fashion—at the loss of message passing and run-time polymorphism
compared with the library implementation of object orientation. How-
ever, other object-oriented fundamentals, such as instance identity,
encapsulation, abstraction, and even object behavior are already
present in Racket’s base structures and also justify an investigation
under an object-oriented point of view.

3. STRUCTURE USAGE IN RACKET
Racket structures are a powerful data structure with broad applica-
bility. They are widely used in Racket packages1 and projects on
GitHub2. Structures are essential for the Racket contracts implemen-
tation. In this section, we investigate how structures are actually used
in different Racket applications. We perform a static and dynamic
analysis of existing applications to identify the typical size of struc-
tures, types used within structures and the frequency of mutation.

We choose five Racket applications from different domains including
development tools, text analysis, mathematics, and games. I Write
Like3 —one of the biggest Racket applications—is a web appication
that analyses the style of a given text by comparing with styles of many
famous writers. This application represents a heavy text analysis
application. The markdown parser application4 is a simple parser for
markdown formatted text that is used in many other Racket projects as
a library. Racket CAS5 is a simple computer algebra system for Racket
with a good built-in test set. 20486 is a Racket implementation of a
famous puzzle-game with numbers. Finally, DrRacket is a feature-
rich Racket integrated development environment (ide), which is
widely used by Racket-programmers.

1http://pkgs.racket-lang.org (visited 2015-12-05)
2https://github.com/search?q=language%3Aracket (v. 2015-12-05)
3https://github.com/coding-robots/iwl (visited 2015-12-05)
4https://github.com/greghendershott/markdown (visited 2015-12-05)
5https://github.com/soegaard/racket-cas (visited 2015-12-05)
6https://github.com/danprager/racket-2048 (visited 2015-12-05)

http://pkgs.racket-lang.org
https://github.com/search?q=language%3Aracket
https://github.com/coding-robots/iwl
https://github.com/greghendershott/markdown
https://github.com/soegaard/racket-cas
https://github.com/danprager/racket-2048

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

N
um

be
ro

fs
tru

ct
ur

e
ty

pe
s

Number of fields per structure

Immutable fields
Mutable fields

Figure 1: Distribution of number of structure fields in the Racket standard library.

Table 1: Results of the static analysis of Racket standard library
source code files.

Structure Type 1765 100 %

With super-types 563 31.9 %
With mutable fields 148 8.4 %
Transparent 659 37.3 %
Prefabs 146 8.2 %

3.1 Static Analysis
We perform a static source code analysis of the Racket v6.2.0.4
standard library comprising 4 812 Racket source code files. We track
the number of immutable and mutable fields and super types per
structure.

3.1.1 Results
Of all the source files, 11.6 % contain all 1765 structure type defini-
tions (cf. Table 1), 31.9 % with super-types. Structures have 2.3±2.6
fields on average, with a median of 2. The largest structure from the
Racket library has 37 fields. 91.6 % of all structure types are im-
mutable. Structures with mutable fields tend to be larger (maximum:
37, mean: 4.55±4.56) than all-immutable structures (maximum: 18,
mean: 2.10±2.17). The distribution is shown in Figure 1.

The statically determined number of structure types in the appli-
cations analyzed is comparatively small; together, they define 22
structure types with at most 5 fields (average 1.64±1.26, median 1),
all immutable. We refrain from plotting the distribution.

3.2 Dynamic Analysis
We instrumented the structure implementation in Racket to track the
creation process of structure types, structure instances, the amount
and types of structure field values, and the frequency of mutate

operations. Our analysis reports the total usage of structures including
the Racket core.

3.2.1 Results
Refining the static analysis, about 85 % of all fields used are im-
mutable, with DrRacket being an outlier with about 61 % of im-
mutable fields. Structure instances have 1.62 fields on average with a
median of 1. The number of instances of each structure type depends
heavily on the specific application, ranging from 200 to 1500 in our
tests. The number of mutations varies even more.

Although structures in Racket are typically used monomorphic, that
is the data type of values stored in a field does not change, some
instances’ fields are used with values of more than one data type
(non-monomorphic). The amount of structures containing at least
one non-monomorphic field is between 5 % and 15 %.

The distribution of field types is homogeneous as illustrated in Fig-
ure 2. The most common data type used in structure field type is
boolean. Up to 70 % of booleans have the value #f (false), which
is used in up to 88 % as a placeholder default value for other data
types, such as procedure. Procedures are also used widely, to the
extent that some structures only contain exactly one procedure—
such procedure-containers are often used as super-types for other
structures. Strings, mutable and immutable, pose the most user-faced
data type in field types while symbols and the syntax type (used by
the Racket macro system) are more system-faced, or even meta-level
types used in structures. Non-scalar field types, such as pairs and
lists, and other structures are common as field types, too. Other types
have a collective share of about 10 %.

Despite our initial assumption, integers are not very common, ex-
cept for the 2048 game that heavily uses integers and floats. Other
applications use numbers significantly less frequently. To show this,
we separated 2048 in Figure 2.

We found only few common data type collocation patterns in struc-
tures, despite the homogeneous field type distribution. Such patterns

0

20

40

60

80

100

Total Except 2048 2048

Boolean
Pair
Structure
Symbol
Procedure
Integer
List
Syntax
Float
String
Other

0

20

40

60

80

100

Total Except 2048 2048

Integer, Integer
2xBool,3xInt,2xString,...
Float, Float, Float
Float, Float, Struct
4xBool,2xPair,Proc,...
Bool, 2xPair, Syntax
Struct, Struct
2xInteger, Struct
Other

Figure 2: Most frequent field types (left) and most frequent combinations of field types (right) in Racket applications

include the use of integer, integer-structures in 2048 for coordinates,
the most prevalent collocation in this application. This is, neverthe-
less, uncommon for other applications. Thus, combinations of stored
together field types in structures are mostly application specific. No
patterns can be derived in the general case as less than 30 % of all
structures exhibit significant similarity. The right part of Figure 2
shows this in more detail.

3.3 Discussion of Analysis Results
We found that Racket structures are relatively small and contain
between one or two fields on average. Furthermore, about 85 % of
structure fields are immutable. Initially unexpected, booleans are the
most common data type in structures. We found that #f (Racket’s false
value) is used a placeholder default value and that the corresponding
filled value is often a procedure.

4. OPTIMIZING RECORDS
Based on the analysis in section 3, we propose fitting optimizations to
use to improve performance when compared with a simple, straight-
forward direct-mapping approach. We think that this catalogue of
optimizations can be worthwhile beyond Racket, given the usage of
record data structures is not completely dissimilar. In particular, we
suggest applying four standard optimizations and propose a new one,
immutable boolean field elision (ibfe). As a running example, we
will use the structures of listing 1.

4.1 Direct Mapping Approach
We first present a most simple approach to realizing Racket structures,
by directly mapping the semantical language components to memory
entities. Considering Figure 3, directly applying Racket’s semantics,
we end up with two records instances, one for the employee type and
one for the person type. The field values are stored in the storage
objects of both instances according to its type. Using storage arrays
poses a simplification as records with different numbers of fields
can be represented by the same implementation type. Note that this
approach does not constitute best practise but rather serves as a
baseline for the optimizations to come.

This approach anticipates the Racket way to access inherited fields.
For example, to access the name of worker in our example, the native

Integer
object header

50000

Record Type
object header

Record Type
object header

name (Person)

name (Employee)
super reference

type reference
super reference

Record
object header

storage

type reference
super reference

Record
object header

storage

super reference

[]
len (2)

String
object header

Developer

[]
len (1)

String
object header

John Smith

properties

properties

immutables

immutables
guard

guard

Figure 3: Direct mapping approach representation of worker

accessor behavior will be called with an offset 0 and the structure
type person, but to access position, it will be called with an offset 0,
too, but this time with the structure type worker. However, certain per-
formance improvements already become apparent: super-instances
never exist solitarily but always together with their sub-instances. Fur-
thermore, they duplicate the hierarchy information already available
in the type.

4.2 General Optimizations
We first consider and apply existing optimizations for records and
similar structures. The combined approach is illustrated in Figure 4.

4.2.1 Flat Structure
A flat structure collapses the semantical hierarchy of record objects
and represents every record with only one object that combines all
fields in its storage. Such an implementation is typical for objects in
oo languages, for example Squeak / Smalltalk [15]. This approach
loses the redundant super-instance / sub-instance tandem and hence
improves memory consumption.

A flat structure saves memory by removing redundant record objects.
A simple, straight-forward record object has a size of four machine-
words multiplied by the number of super-types, one for the header

Record Type
object header

Record Type
object header

name (Person)

name (Employee)
super reference

type reference

Record
object header

super reference
fields offsets

fields offsets

Typed Cell
object header

50000

properties

properties

immutables

immutables

guard

guard

Integer

String
object header

John Smith

String
object header

Developer

Figure 4: Flat structure, inlined fields, and mutable salary field,
wrapped into a typed cell with an unboxed value.

and three for references to the type, super instance, and storage for
each record object in the hierarchy. Additionally, every record object
typically has a storage that takes two additional words (typically one
for the length and one with special purpose, commonly for the garbage
collector (gc)). Records with a flat structure do not have super-
instances, which saves one word for the reference to the super-type
and six words for every super-type of every record instance, that is
four word for the record and two for the storage. Assuming that about
31.9 % of Racket’s structures have one super-type (cf. section 3), for
n structure objects, that saves

n · (6 ·0.319+1) (1)

words in Racket on average.

Nevertheless, records with a flat structure make the implementation
of the native accessing behavior more complex. The per-structure-
type indices now have to be mapped to the absolute index into the
record’s storage. These indices do not change over time and, therefore,
a static mapping for each field can be calculated in advance.

4.2.2 Inlining
The direct mapping approach contains an indirection between a struc-
ture’s representation entity and the actual storage for the structure’s
fields. This eases the implementation of the representation entity,
for example as instances of a structure class. This additional hop,
however, can be cause for performance bottlenecks, as every field
read has to traverse the indirection. A best practice is to fuse records
and their storage, improving execution time performance by reducing
costs of object allocation and pointer dereference. Implementations
like the Squeak vm or the Java Virtual Machine (jvm) do this for
their object representation.

Arbitrarily large structures may, however, slow down the overall
allocation performance and hamper gcs. While Racket structures
may have up to 32 768 fields7 , the actual amount of structure fields
used in Racket is typically low; between one and two fields on average
(cf. section 3). Hence, we propose to limit inlining to only few fields
and store larger records with a separate storage, as done in the PyPy
implementation of Python [20].

7http://docs.racket-lang.org/reference/creatingmorestructs.html (visited
2015-07-01)

Record Type
“object header”

name (Employee)
super reference

type reference

Record
“object header”

fields offsets
properties

immutables
guard String

“object header”

John Smith

Record Type
“object header”

name (Person)
super reference

fields offsets
properties

immutables
guard

Figure 5: Employee record data structure with inlined fields.

Field inlining reduces the complexity of data access operations by
removing a one additional access hop. This optimization releases
three words for every structure instance, that is one word for a storage
reference and two words for a storage array (length and special/gc
word, as above). For n structures, that saves

n ·3− sizeO f SpecializedClasses (2)

words, where the sizeO f SpecializedClasses indicates the memory
needed for specialized record classes containing a certain amount
of fields. If the total amount of fields is greater than a predefined
limit, fields are stored in the storage without changes. This avoids the
creation of a big amount of record classes, which may not be used
at all. The inlining technique has two important advantages. First,
records with inlined fields take less space than records with a storage.
But even more, inlining is crucial for optimizing the access to the
record fields, because it avoids an indirection to a separate storage.

4.2.3 Unboxing and mutability separation with cells
Record data structures in dynamic programming languages can con-
tain fields of arbitrary types. A usual way to implement storing of
different data types together is boxing, that is, an allocation of all
field values on the heap with a common header. Boxing simplifies
the implementation of dynamic programming language significantly,
because all different objects obtain a common simple representation.
Nevertheless, boxing is not always efficient.

For example, to store an integer in C, only one machine-word is
typically needed. For comparison, it typically needs at least three
words to store a boxed integer in a dynamical language running in
the vm (one to store the type of object and the last one to store the
particular value of integer, and typically one for the gc) [5]. This
problem gains importance when many objects are stored together in
records.

One solution is to store the record field values unboxed, saving the
type information separately once for many objects. The object where
this type information is stored is called field type. However, a mutation
of a field to a new value with another type involves dereferencing of

http://docs.racket-lang.org/reference/creatingmorestructs.html

Record Type
“object header”

Record Type
“object header”

name (Person)

name (Employee)
super referencetype reference

Record
“object header”

super reference
fields offsets

fields offsets

Cell
“object header”

field reference

John Smith
Developer Field

“object header”

50000

Field Types
“object header”

String
String
Cell

field types ref

Field
“object header”

unknown

properties

properties

immutables

immutables

guard

guard

Figure 6: Record with a mutable salary field, wrapped into a
cell. Mutation does not affect the immutable reference in the
structure— rather, the reference from the cell to the old value
(red) will be updated with a new value (green italic).

a field types object and even a creation of a new field types object if
no proper field types object exists.

Assuming that structures have 1.6 fields on average and the part of
structures with homogenised fields is about 85 %, for n structures,
this optimization saves

n ·2 ·1.6 ·0.85 ·0.44−n− sizeO f FieldTypes ≈ 0.2n (3)

words in Racket, where sizeO f FieldTypes is the size of field types
objects containing the type information of fields. That is, this opti-
mization is not very efficient for small records in Racket. Furthermore,
unboxing brings some memory overhead because of storing field
types pointers and increases the implementation complexity. This
overhead may lead to the negative optimization effect in the worst
case, when records contain boxed values only.

The complexity of field types to support mutability can be alleviated
by partially boxing the mutable content of structures. Also, imple-
mentations can take advantage of the fact that Racket structures
have mostly immutable fields. Moreover, if all fields of a structure
were always immutable, better optimizations would be imaginable;
especially just-in-time (jit) compilers that use tracing or partial
evaluation could benefit. Combining this, we propose to treat all
structures as immutable and use an indirection object, called cell, for
the few fields that are actually mutable. Changing the value of a field
no longer affects the structure itself but rather delegates the change
to the cell representing the mutable field, as can be seen in Figure 6.
That way, the maintenance of field types is completely absorbed into
managing cells, which may or may not be typed. This technique is
common in Lisp and Scheme applications, among others. As the mu-
tability of fields is a property of a structure’s type, wrapping objects
in cells can efficiently be done at structure allocation.

Using cells implies an inherent memory and access time overhead.
However, as most fields are used monomorphic, we can specialize
cells to typed cells, which store a type and an unboxed value. They
can change their type field dynamically upon mutation. Thus, if a
mutable record field belongs to a known type, such as integer or float,
a typed cell stores its value unboxed, reducing the cell’s overhead.

We obtain an optimization that (a) improves execution time for access
to mutable fields and (b) can reduce memory consumption for larger
structures. However, the general structure size is small in Racket, so
we propose to just use the cell part without the general unboxing.

IBF indicator for
false on field 2

(salary)type reference

Record
object header

Record Type
object header

name (Employee)
super reference

fields offsets
properties

immutables
guard

String
object header

Marissa Brin

String
object header

CEO

Record Type
object header

name (Person)
super reference

fields offsets
properties

immutables
guard

Figure 7: employee structure with an ibf indicator denoting the
elision of field 2

4.3 Immutable Boolean Field Elision
Booleans are the most frequent field type in Racket structures. How-
ever, up to 70 % of boolean fields have the value #f. Knowing that
most (up to 85 %) fields are actually immutable, a high number of
fields in Racket structures hence consist of immutable boolean fields
(ibfs).

It seems feasible to actually not store this infomation as a field value
per se. Instead of storing both positions and values of the boolean
fields, we use an indicator to denote all positions of ibfs within a
structure, effectively eliding the immutable #f values; we call this
immutable boolean field elision (ibfe). This indicator might be
implementation specific; but in the same way structures that contain
mutable fields or unboxed fields must be commuticated to the runtime,
ibfs can be communicated similarly, be it tagging, header bits, or
class-based indication as in Figure 7, to name a few. It is crucial that
all possible combinations of ibfs for an arbitrary record instance are
present as indicators at structure allocation time. For example a record
class with three fields, all immutable, that gets instantiated with an #f

value on position two could use an implementation class that treats
position two specially by not providing storage for it (cf. Figure 7).
That implementation class would act as ibf indicator. Note that the
#t value is not treated specially by immutable boolean field elision
(ibfe), as are #f values in mutable fields. These are stored as if ibfe
was not present at all.

The booleans optimization saves memory by reusing immutable false
values. Assuming that structures have an average size of 2.3 fields,
26 % of all fields are booleans and 70 % of booleans are false, and
also that 85 % of fields are immutable in Racket, for n structure
objects, this saves

n ·2.3 ·0.26 ·0.7 ·0.85− sizeO f SpecializedClasses ≈ 0.36n (4)

words in Racket on average, where sizeO f SpecializedClasses indi-
cates the required memory for pre-defined structure classes with false
fields. Although this optimization may have less positive impact on
memory consumption on average, it does not add memory overhead
for records in the worst case as unboxing with field types would. For
extreme case, where every record has one immutable field with a
value false, the saving would be approximately n.

Using ibfe, memory for immutable #f values can be saved at the
expense of providing a large enough number of ibf indicators, which
poses a trade-off. Applications with only few ibfs and large structures

would be hit by the overhead of maintaining ibf indicators; however,
our analysis shows that these cases are rare in Racket applications.

5. STRUCTURES IN PYCKET
We implemented the presented optimizations in Pycket, a Racket
implementation using the RPython toolchain and its meta-tracing
jit compiler.

5.1 RPython and Pycket
RPython [4] is a framework for implementing interpreters, consisting
of a type-inferenceable (“restricted”) subset of Python and a toolchain
that translates an interpreter written in the RPython language into
an efficient vm. Lower-level vm features, such as gc, object layout,
and a meta-tracing jit compiler are inserted automatically during the
translation process. RPython was used for efficient implementations
of several dynamic languages including Python [1], Prolog [7], and
Smalltalk [6].

5.1.1 Meta-tracing
Typically, tracing jit compilers optimize the executable program
directly. For the meta-tracing jit, the executable program is itself
an interpreter running a user’s program code. In other words, the
meta-tracing jit operates on a representation of the interpreter. In
order to produce efficient vm with RPython, the interpreter needs
some hints from the developer, to help the tracing jit to identify
loops in the interpreted program, and perform other optimizations.

The RPython jit compiler records operations executed by the inter-
preter running a user’s program. The produced linear sequences of
machine code are called traces and they are only recorded for loops,
which were performed more than a certain number of times. Only
operations executed by the interpreter for one iteration of the loop
are recorded by the tracing jit compiler. The tracing process then
optimizes the machine code instruction sequence and generates new
machine code that is used for next iterations of the loop.

Because of the linearity of sequences, the trace represents only one of
the potential execution flows. To provide the correctness of program
execution, the jit inserts guards, special instructions, which detect
when the program execution conflicts with the trace and return control
back to the interpreter.

5.1.2 Pycket
Pycket8 is an implementation of Racket using the RPython tool-
chain and based on the control, environment, and continuation (cek)
abstract machine [11]. Using the cek machine eases the implemen-
tation of some more complex features of Racket, such as proper
tail calls, first-class continuations, and multiple return values [3]. It
is already competitive with the best existing ahead-of-time (aot)
Scheme compilers, particularly on safe, high-level, generic code [8].
However, it is not yet feature-complete and in particular had no
structure support prior to this work.

5.2 Optimization Steps
Practically all implementations of record-like data structures skip the
step Direct Mapping Approach described in section 4.1. However,
for evaluation purposes, we included a direct-mapping-based imple-
mentation all following optimizations are applied to. Accordingly,
8https://github.com/pycket/pycket/ (visited 2015-06-01)

all structure types are implemented as instances of an RPython-level
class (W_StructType) and all structures as instances of a distinct class
(W_Struct or its subclasses) with a reference to the structure type, a
references to a storage for the fields, and possibly a reference to its
super-instance.

5.2.1 Flat Structure
For a flat structure, a structure instance no longer refers to its super-
instances but assumes all their former fields. However, the positions
of all fields in the structure type hierarchy have to be mapped to the
absolute fields positions to retain data access semantics: the language-
level accessor and mutator procedures handle field indices relative to
their respective type and respective to the top-most super-type. The
absolute offsets do not change, however, and hence are calculated
once during the structure type initialization and marked as immutable.
This allows the jit compiler to remove most field-position related
calcualtions at run-time.

5.2.2 Inlining
The inlining optimization changes the data layout of structures by
fusing structures and their storages together. This optimization re-
quires the creation of modified structures, which may contain field
values as attributes.

To inline fields into the structure instance, several specialized struc-
ture classes exist that each represent structures of a certain size.
Following PyPy’s example, only up to 10 fields are actually inlined;
larger structure instances still use a separate storage. Therefore, 12
implementation classes for structures are provided. The decisions
which particular class is used for a structure instance is made at run-
time as part of the instantiation process. Thus, if a new structure does
not exceed the limit, one of the specialized implementation classes is
chosen, and field values are saved in the structure’s attributes directly.

5.2.3 Typed Cells for Mutability Separation
Cells allow to keep all structure fields immutable by wrapping all
mutable fields into cell objects. Cells stay immutable itself as a part
of the structure, but may change their content.

The concept of a typed cell was already available in Pycket before
introducing structure support and has been used for mutable globals
and environment optimization, to name a few. Pycket cells store their
values unboxed using storage strategies [5]. If a matching strategy
exists, a cell stores its value unboxed, for example integer and float
values. Otherwise, cells use a general strategy and store values boxed.

Hence, for structure support, upon creation of a structure instance,
all mutable fields— which are known in advance— are wrapped by
cells and all of the structure instance’s actual fields stay immutable.
Also, all accessor and mutator behavior has been adapted to use the
cells to unwrap and wrap valued automatically.

5.3 Eliding Immutable Boolean Fields
To benefit from immutable boolean fields, we suggested immutable
boolean field elision (ibfe) in section 4.3. We chose to use the
structure implementation class to represent the ibf indicators. As
RPython does not support creation of RPython-level classes at run-
time, all necessary indicators have to be generated in advance, before
translation. However, a very high number of ibf classes can severely
slow down allocation and possibly start-up time. Therefore, we as-
sume an upper limit to the number of fields we consider for ibfe.

https://github.com/pycket/pycket/

The amount of indicators that are necessary for a given limit l is(l
1
)
+
(l

2
)
+ · · ·+

(l
l
)
. In Pycket, we chose 5 as the default limit, re-

sulting in 21 pre-defined ibf indicator classes. This seems sufficient,
given the average size of Racket structures but not overly restric-
tive, as it covers over 90 % of the structure type encountered in the
Racket standard library (cf. section 3). Nevertheless, all ibf indicator
classes are subjected to the inlining described above, so that each ibf
indicator is actually represented by 12 classes for the field inlining.

Hence, when instantiating a structure, Pycket has 252 structure
classes to chose from. The operation that maps from all ibf po-
sitions to the matching structure class benefits from a lexicographical
order of all structure classes; the combination of #f positions deter-
mines the position of a structure class uniquely. During instantiation,
all positions of immutable fields about to be initialized with #f are
shifted to account for their elision. This can also help the inlining
optimization, as larger structures with many ibfs now can potentially
use an inlined representation instead of a split one.

Accessing an ibf is cheap; with ibfe we make sure that all accesses
to those fields are in constant time.

5.4 A Note on Unboxing
As outlined in subsubsection 4.2.3, providing unboxing and mutabil-
ity with field types is expected to only help for larger structures. It
turns out that Pycket already has provides limited unboxing capabili-
ties for implementation classes iff

1. all fields are immutable,
2. the size is not larger than two, and
3. the stored values are either of Racket’s fixnum or flonum type.

In this case, two or four words of memory can be saved. Given Racket
structures are mostly small and mostly immutable. However, we use
this automatic unboxing only for the ibfe optimization level.

5.5 Implementation Summary
Overall, the whole structures implementation in Pycket includes 15
implementation classes, about 30 structure primitives, and about 50
general primitives, totalling in about 2000 lines of RPython code.

6. EVALUATION
Pycket is not yet a feature-complete Racket implementation and due
to pending (non-structure related) features, the existing Racket struc-
ture benchmarks do not run yet. We therefore use a set of micro-bench-
marks9 instead. We provide an evaluation and execution time and
memory consumption based on these benchmarks.

Setup All benchmarks were run on an Intel Core i5 (Haswell) at
1.3 GHz with 3 MB cache and 8 GB of RAM under OS X
10.10.2. All micro-benchmarks are single-threaded. RPython
at revision a10c97822d2a was used for translating Pycket.
Racket v6.2.0.4 and and Pycket at revision 3d0229f were used
for benchmarking.

Methodology Every micro-benchmark was run five times uninter-
rupted. The execution time was measured in-system and, hence,
it does not include start-up time. However, it does include

9https://github.com/vkirilichev/pycket-structs-benchmarks (visited
2015-12-05)

warm-up time and the time needed for jit compilation. We
show the execution times of all runs relative to Racket with
bootstrapped [10] confidence intervals for a 95 % confidence
level. The memory consumption was measured as maximum
resident set size and is given relative to Racket; the confidence
intervals were negligibly small and have been omitted.

6.1 Micro-benchmarks
The micro-benchmark set consists of of ten tests. Besides examining
basic operations, such as structure creation, call of the predicate
procedure and accessing and mutating structure fields, we include
two slightly more realistic use-cases.

6.1.1 Basic Operations
We used the following benchmarks for the basic operations: create
creates simple structures representing two-dimensional coordinates
with integer values; create/super re-uses the create benchmarks, but
adds a third dimension using structure type inheritance; create* is
the same a create, but with an ibf as first field; create/super* is
the same as create/super, but with an ibf as first field; predicate
checks the type of given structures including the whole type hierarchy;
access performs accesses to various immutable fields of structures;
and mutate changes every value of a structure and reads the stored
value afterwards on each loop iteration. Each benchmark essentially
contains a loop with few basic operations and collects the result in a
variable to avoid elimination.

6.1.2 Binary Tree
In the binary tree benchmark, the base structure type represents a leaf,
which has only a value. A node is a subtype of the leaf referencing two
other nodes. This benchmark tests several operation with structures
of multiple types simultaneously. We use two versions of this micro-
benchmark, where values of leaves are integers (binarytree) and
booleans (binarytree*), respectively.

6.1.3 Parser
The parser benchmark is a Brainfuck10 interpreter. It creates one
instance of a structure referencing a list and a data pointer. The
operations on the structure include mutations of the data pointer
and accessing list elements, and hence, the parser benchmark tests
the structure’s accessor and mutator, but not the constructor. The
benchmark’s interpreter executes a simple program that generates a
Sierpinsky triangle several times.

6.2 Optimization Impact and Results
We report the impact of all optimizations on execution time and
memory consumption. The final performance results of optimized
Pycket are shown in Figure 8. Note that we accumulate optimization,
as they form dependencies. Hence, for example, inlining includes
flat structures. The raw numbers are presented in section 9. By way
of example, we show the validity of the predicted memory saving,
using the create, create/super, and binarytree benchmarks. For ibfe,
we however use their boolean counterparts create*, create/super*,
and binarytree*.

6.2.1 Direct Mapping Approach
10Brainfuck is an esoteric programming language that models a Turing
machine with eight operations on an array.

https://github.com/vkirilichev/pycket-structs-benchmarks

0

1

2

3

access

binarytree

binarytree*
create

create

super create

super* create*
mutate

parser

predicate

R
e

la
ti

v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0

1

2

3

access

binarytree

binarytree*
create

create

super create

super* create*
mutate

parser

predicate

R
e

la
ti

v
e

 m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n

Virtual Machine

Racket
Pycket
+ Flat Structures
+ Inlining
+ Cells
+ Boolean opt.

Figure 8: Benchmark results with execution times (left) and memory consumption (right) normalized to Racket. Lower is better.

In some benchmarks, such as predicate, access, mutate, and also
parser, Pycket shows outright better execution time and memory
consumption results, even without any optimization (“Pycket”).

Expectedly, benchmarks that require the creation of many structures
initially show worse performance, for example both create and both
binarytree benchmarks.

6.2.2 General Optimizations

6.2.2.1 Flat Structure.
This optimization improves performance when the benchmarks fre-
quently create structure instances, for example in all create…and
binarytree…benchmarks. The impact on the remaining tests is less
pronounced. Some benchmarks with intensive access operations
show slightly worse performance results, for example access.

For memory consumption, the flat structure optimization should save
n · (6 · 0.319+ 1) words for n structures on average, according to
Equation 1. However, in our tests, structures either always have a
one super-type or do not have super-types at all. Thus, this formula
transforms to n · (6+1) = n ·7 for structures with exactly one super-
type, for example in create/super and binarytree and n for the create
micro-benchmark where structures are created without super-type.
Having one machine-word equals 64 bit and 15 000 000 structures
in the create benchmark results in

n = 15000000 ·64bit ≈ 114.4MB.

The create benchmark shows a benefit of 115 MB. The predicted
gain of memory consumption for the create/super benchmark with
30 000 000 structure instances is

n ·7 = 30000000 ·7 ·64bit ≈ 1602.2MB

which is approximately equal to the result of 1603.8 MB. For binary-
tree, whose nodes always have one super-type except the leaves, the
result for trees of depth 22 is

n1 ·7+n2 = (222 ·7+223) ·64bit ≈ 288MB

which corresponds with test results of 288.7 MB. The the overall
level of memory consumption for Pycket is bigger than for Racket.

As expected, benchmarks with an intensive creation of structures
require much less memory. Other benchmarks, for example mutate,
that do not create a hight number of structures, do not gain benefits in
memory consumption from this optimization. (“+ Flat Structures”)

6.2.2.2 Inlining.
As expected, all benchmarks except mutate gained execution time
performance, especially for creation heavy benchmarks, where the
avoided indirection shows in reduced execution time and memory
consumption. The actual memory saving, according to Equation 2,
should be n · 3− sizeOfSpecializedClasses words, for n structure
instances. The size of the specialized classes turned out to be insignif-
icantly low. Having 15 000 000 structure instances in the create micro-
benchmark, we should save

n ·3 = 15000000 ·3 ·64bit ≈ 343.3MB.

The measurement 344.6 MB differs only slightly. For the create/super
micro-benchmark with 30 000 000 instances, we should save

n ·3 = 30000000 ·3 ·64bit ≈ 686.6MB.

Our measurement deviates slightly with 689.8 MB. Finally, for binary-
tree with a 22-level deep tree, we expected

n ·3 = 223 ·3 ·64bit ≈ 192MB

which fits our measurement of 192.9 MB. (“+ Inlining”)

6.2.2.3 Mutability separation with cells.
The mutate benchmark achieves a significant speed-up from the cell
optimization, as the jit can now treat the actual structure instance
as immutable; the additional indirection pays off. As expected, other
performance results remain approximately the same.

The Pycket automatic unboxing for small structures has not been en-
abled for this optimization level, hence, there is only minor influence
of using cells on memory consumption on itself. (“+ Cells”)

6.2.3 Immutable Boolean Field Elision
All benchmarks with ibfs— that is create*, create/super* and bi-
narytree*— achieve a speed-up and reduced memory consumption.
In these particular benchmarks, the execution time becomes about
30 % faster. Memory savings range from 25 % to 40 %. At the same
time, all other benchmarks are virtually untouched, showing next to
no disadvantages of employing ibfe. (“+ Booleans opt.”)

The actual memory saving, according to Equation 4, should be n ·
2.3 ·0.26 ·0.7 ·0.85−sizeO f SpecializedClasses ≈ 0.35n words, for
n structure instances. However, the benchmarks deviate from the
average numbers in the sense that the use of ibfs is well known and
the three boolean-related benchmarks yield different but expected
results, Also Pycket’s automatic unboxing of small structure applies
(cf. section 5.4) . The size of the specialized classes turned out to be
insignificantly low.

6.2.3.1 create*.
Structures have one ibf per (two-field) instance, always being false,
all fields immutable, yielding n · 2 · 1

2 = n. Considering Pycket’s
automatic unboxing, create* makes use of Racket’s a fixnum for the
second structure field. Hence, compared with the cells optimization
level, additional two words per structure are saved, yielding n · (2+
2 · 1

2) = 3n. Having 15 000 000 structure instances for create*, we
should save

3n = 3 ·15000000 ·64bit ≈ 343.3MB.

The measured result 344.6 MB differs only slightly.

6.2.3.2 create/super*.
Structures have two ibf per (three-field) instance, always being false,
all fields immutable, yielding n ·3 · 2

3 = 2n. However, the third field
being a Racket fixnum, and the number of actual fields dropping from
three to one due to ibfe, Pycket’s unboxing applies, and additional
two words will be saved per structure instance, eventually yielding n ·
(2+3 · 2

3) = 4n. Having 30 000 000 structure instances create/super*,
we should save

4n = 4 ·30000000 ·64bit ≈ 915.5MB.

The measured result 881.8 MB deviates less than 4 %.

6.2.3.3 binarytree*.
Structures have one ibf with a false per instance, yielding n. With a
tree depth of 22, we should save

n = 223 ·64bit = 64MB

witch matches the measured result exactly.

6.3 Limitations
We only evaluated the efficiency of structures in Pycket on self-
written benchmarks. Although they are well suited to test perfor-
mance of basic operations with structures, real-world applications
may show different behavior as part of future work. Once feasible,
more elaborate benchmarks will be used.

jit warm-up time has an impact on execution time. We use our
benchmarks with a sufficient warm-up time, which is not guaranteed
to be always reachable in real-world applications. Also, warm-up

time may differ between benchmarks. In order to illustrate the im-
portance of the sufficient warm-up time in micro-benchmarks, we
ran the create/super micro-benchmark with different numbers of
iterations. The results of this benchmark are presented in Figure 9.
Pycket shows pure performance results with a small number of itera-
tions, but starting with some sufficient number (about 30 millions
in this particular micro-benchmark), Pycket is continuously faster.
The slowness of Pycket at the beginning arise from the jit warm-up.
Therefore, we use different, sufficiently large numbers of iterations
in every benchmark to show the well-established performance.

1

10

100

1000

10000

100000

1×106

100K 500K 1000K 5000K 10000K 50000K 100000K
Ex

ec
ut

io
n

tim
e

(in
lo

g(
m

s)
)

Number of iterations

Racket
Pycket

Figure 9: Execution times (in log(ms)) of create/super micro-
benchmarks for Racket and Pycket with different number of it-
erations illustrate the influence of JIT warm-up. Lower is better.

Finally, we are unable to influence internal CPU optimizations, such
as enabling a boost-mode. However, such optimizations should work
same for both Racket and Pycket running single threaded.

7. RELATED WORK
Late Data Layout is a lightweight annotations mechanism [22] to
eliminate limitations of coercions between internal data represen-
tations. Boxing and unboxing operations are not inserted eagerly
by a compiler but only at execution time, with checks that ensure
the consistency of the data representation. The checks are based on
multi-phase type-driven data representation transformations local-
type inference. Hence, unnecessary transformation operations can
be omitted and data-type representations are added optimally.

The object storage model [23] of Truffle [24] creates every object
as an instance of a storage class, which works as a container for
the instance data. This class references a shape that describes the
object’s data format and behavior. Shapes and all their accessible
data are immutable, but the reference to a shape from the storage
class themselves can vary over time. Thus, any change of the object’s
shape results in a new shape. The proposed approach is suitable for
sufficiently efficient compilation with further optimizations, such as
polymorphic inline cache (pic) for efficient object’s property lookup.

A more specialized approach to increase performance of data struc-
tures in vms is storage strategies [5] for collections of homoge-
neously typed elements. If possible, they are stored unboxed and
their type is stored separately and only once with a special object
called strategy. For example, adding an integer to an empty collection
enables the integer strategy for this collection and this integer and
all subsequent integers will be saved unboxed. However, adding a
non-integers, for example a string, causes a transition to a generic

strategy, because the collection is now heterogeneous. It is assumed
that such transformations are unlikely, which is shown by the authors.
A similar approach is used for structures with mutable cells in this
work. Every cell has its strategy and its values are saved unboxed,
unless under a generic strategy.

While pointer tagging and strategies reduce memory consumption
by unboxing values, it is also possible to reduce the size of the
structure itself, when a substantial amount of structures is allocated.
Structure vectors group structures of the same type, allowing to store
the header and the type descriptor only once [9]. This optimization is
most beneficial when large amounts of structures are used, achieving
a speed-up of up to 15 %. Yet, while allocation becomes faster, field
access and especially type descriptor access become up to three to
four times slower [9]. However, the allocation of a big number of
structures is not very common in Racket (cf. section 3).

An effective run-time representation exists for R6RS Scheme records [16]
where each record has an associated execution time representation,
record-type descriptor (rtd), determining its memory layout. When
an rtd is created, the compiler calculates record sizes and field
offsets for this record type similar to the way presented here. They
have flat representation with inlined fields, quite similar to structures
Pycket. A special interface allows to store raw integers, untagged
floating point numbers, and raw machine pointers, in addition to
ordinary Scheme data types.

The representation of structures in Racket’s implementation is related
to our work, too. However, we deliberately chose to not investigate the
implementation but rather base our approach solely on the extensive
documentation and the static and dynamic analyses. A comparison
of our implementation to Racket’s is part of future work.

8. CONCLUSION AND FUTURE WORK
We presented an analysis of record structure usage in Racket and pro-
posed optimizations that are fit for an efficient implementation. We
considered three common approaches and devised a novel optimiza-
tion for immutable boolean fields. We applied these approaches to Py-
cket, a tracing-jit-based implementation of Racket, and achieve a sig-
nificant speed-up compared to Racket in provided micro-benchmarks
with a sufficient warm-up time. We evaluated the impact of our opti-
mizations with a set of micro-benchmarks.

Our results suggest further investigation of unboxing values, as ho-
mogenised fields in structures make up about 85 % in Racket on
average. Adaptive optimizations [19] show promising initial results
and may be applied to records in the future. Finally, once Pycket’s
feature coverage is sufficient, we will run a broader range of bench-
marks.

9. APPENDIX: COMPREHENSIVE BENCH-
MARK RESULTS

The results of all benchmarks are presented in Table 2 (execution
time) and Table 3 (memory consumption). The first rows of these ta-
bles contain Racket numbers for references. The second row present
the unoptimized implementation. All subsequent rows represent im-
provements with each optimization, in an accumulated fashion, that
is, the last row represents Pycket with all optimizations presented
here. Benchmarks annotated with * make explicit use of booleans.
All error values are bootstrapped [10] confidence intervals for a 95 %
confidence level.

Acknowledgments
We gratefully acknowledge the financial support of HPI’s Research
School and the Hasso Plattner Design Thinking Research Program
(HPDTRP). We want to thank Carl Friedrich Bolz for fruitful discus-
sions, Spenser Bauman, Jeremy Siek, and Sam Tobin-Hochstadt for
their support during implementation, and the anonymous reviewers
for their insightful comments. Carl Friedrich Bolz is supported by
the EPSRC Cooler grant EP/K01790X/1.

10. REFERENCES

[1] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. “RPython:
A Step Towards Reconciling Dynamically and Statically Typed
OO Languages”. In: Proc. of DLS 2007. DLS ’07. Montreal,
Quebec, Canada: ACM, 2007, pp. 53–64.

[2] D. F. Bacon, S. J. Fink, and D. Grove. “Space- and time-
efficient implementation of the Java object model”. In: ECOOP
2002 — Object-Oriented Programming. Ed. by B. Magnusson.
Vol. 2374. LNCS. Springer, 2002, pp. 111–132.

[3] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Krilichev, T. Pape,
J. Siek, and S. Tobin-Hochstadt. “Pycket: A Tracing JIT For
a Functional Language”. In: Proc. of ICFP 2015. ICFP ’15.
Vancouver, British Columbia, Canada: ACM, 2015.

[4] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. “Tracing
the meta-level: PyPy’s tracing JIT compiler”. In: Proc. of
ICOOOLPS 2009. ACM. 2009, pp. 18–25.

[5] C. F. Bolz, L. Diekmann, and L. Tratt. “Storage strategies
for collections in dynamically typed languages”. In: Proc. of
OOPSLA 2013. ACM. 2013, pp. 167–182.

[6] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nier-
strasz, L. Renggli, A. Rigo, and T. Verwaest. “Back to the
future in one week—implementing a Smalltalk VM in PyPy”.
In: Self-Sustaining Systems. Springer, 2008, pp. 123–139.

[7] C. F. Bolz, M. Leuschel, and D. Schneider. “Towards a Jitting
VM for Prolog Execution”. In: Proc. of PPDP 2010. PPDP
’10. Hagenberg, Austria: ACM, 2010, pp. 99–108.

[8] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt. “Meta-
tracing makes a fast Racket”. In: Workshop on Dynamic Lan-
guages and Applications. 2014.

[9] B. Cérat and M. Feeley. “Structure Vectors and their Imple-
mentation”. In: Scheme and Functional Programming Work-
shop. 2014.

[10] A. C. Davison and D. V. Hinkley. In: Bootstrap Methods and
Their Application. Cambridge, 1997. Chap. 5.

[11] M. Felleisen and D. P. Friedman. Control Operators, the
SECD-machine, and the λ-calculus. Indiana University, Com-
puter Science Department, 1986.

[12] M. Flatt. Reference: Racket. Tech. rep. PLT-TR-2010-1. PLT
Design Inc., 2010.

[13] M. Flatt, R. Findler, and M. Felleisen. “Scheme with Classes,
Mixins, and Traits”. In: Programming Languages and Sys-
tems. Ed. by N. Kobayashi. Vol. 4279. LNCS. Springer, 2006,
pp. 270–289.

[14] R. P. Gabriel. “LISP: Good news, bad news, how to win big.”
In: AI EXPERT. 6.6 (1991), pp. 30–39.

Table 2: Execution times (in ms) for Racket and Pycket (without optimizations, with flat structures, with inlined fields, with cells, and
with ibfe). Less is better.

VM / Optimization Create Create* Create/sup. Create/sup.* Predicate Access Mutate Binary tree Bin. tree* Parser

Racket 4982±134 5210±114 19 684±726 20 243±97 3585±105 2917±125 4306±223 1817±61 2046±82 1061±52
Pycket 7027±39 5683±134 35 779±1395 24 657±772 221±8 172±16 1214±14 4735±202 3959±205 715±61
+ Flat structure 6116±90 5245±140 20 575±742 14 132±160 227±10 162±5 1291±88 3133±126 2379±132 732±54
+ Inlined fields 4821±169 4002±122 14 682±261 10 654±104 226±11 177±10 1250±23 1976±136 1429±76 667±23
+ Cells 4886±70 3894±58 14 446±488 10 066±8 224±21 171±6 355±12 1850±115 1504±29 684±53
+ Booleans 4726±94 2586±77 14 317±432 5517±81 216±14 161±5 387±15 2016±109 1224±51 666±28

Table 3: Memory consumption (in MB) for Racket and Pycket (without optimizations, with flat structures, with inlined fields, with
cells, and with ibfe). Less is better.

VM / Optimization Create Create* Create/sup. Create/sup.* Predicate Access Mutate Binary tree Bin. tree* Parser

Racket 871.7±0.0 871.7±0.1 1923.9±0.0 1924.0±0.0 50.5±0.7 813.8±0.0 813.8±0.0 376.3±0.7 376.6±0.1 52.1±0.0
Pycket 1692.5±0.0 1462.5±0.0 5365.0±4.2 4882.6±3.9 6.5±0.0 769.6±0.0 769.7±0.0 875.7±0.1 747.2±0.1 33.3±0.2
+ Flat structure 1577.4±0.1 1347.6±0.0 3761.3±0.0 2841.6±0.0 6.5±0.0 769.5±0.0 769.7±0.0 587.0±0.1 457.7±0.1 34.7±0.5
+ Inlined fields 1232.7±0.0 1003.0±0.0 3071.5±0.0 2152.1±0.0 6.5±0.0 769.5±0.0 769.7±0.0 394.1±0.1 265.1±0.1 34.1±0.3
+ Cells 1232.8±0.1 1003.0±0.0 3071.5±0.0 2152.1±0.0 6.5±0.0 769.5±0.0 769.7±0.0 394.1±0.1 265.1±0.1 34.6±0.3
+ Booleans 1233.0±0.1 696.1±0.0 3071.8±0.1 1270.3±0.0 6.7±0.0 769.8±0.1 769.9±0.0 394.1±0.1 201.1±0.1 34.9±0.4

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
“Back to the future: the story of Squeak, a practical Smalltalk
written in itself”. In: ACM SIGPLAN Notices. Vol. 32. 10.
ACM. 1997, pp. 318–326.

[16] A. W. Keep and R. Dybvig. “A run-time representation of
scheme record types”. In: J Funct Program 24 (Special Issue
06 2014), pp. 675–716.

[17] R. Mitchell, J. McKim, and B. Meyer. Design by contract, by
example. Addison Wesley, 2001.

[18] M. E. Noth. “Exploding Java Objects for Performance”. PhD
thesis. University of Washington, 2003.

[19] T. Pape, C. F. Bolz, and R. Hirschfeld. “Adaptive Just-in-time
Value Class Optimization: Transparent Data Structure Inlining
for Fast Execution”. In: Proc. of SAC 2015. Vol. 2. SAC ’15.
Salamanca, Spain: ACM, 2015.

[20] A. Rigo and S. Pedroni. “PyPy’s approach to virtual machine
construction”. In: Proc. of OOPSLA 2006. Portland, Oregon,
USA: ACM, 2006, pp. 944–953.

[21] G. J. Sussman and G. L. Steele Jr. “Scheme: A interpreter for
extended lambda calculus”. In: Higher-Order and Symbolic
Computation 11.4 (1998).

[22] V. Ureche, E. Burmako, and M. Odersky. “Late data layout:
unifying data representation transformations”. In: Proc. of
OOPSLA 2014. ACM. 2014, pp. 397–416.

[23] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, H. Mössenböck, and
C. Humer. “An Object Storage Model for the Truffle Language
Implementation Framework”. In: Proc. of PPPJ 2014. PPPJ
’14. Cracow, Poland: ACM, 2014, pp. 133–144.

[24] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. “One
VM to rule them all”. In: Proc. Onward! 2013. ACM. 2013,
pp. 187–204.

	Introduction
	Background
	Structures in Racket
	Structures and Objects

	Structure Usage in Racket
	Static Analysis
	Results

	Dynamic Analysis
	Results

	Discussion of Analysis Results

	Optimizing Records
	Direct Mapping Approach
	General Optimizations
	Flat Structure
	Inlining
	Unboxing and mutability separation with cells

	Immutable Boolean Field Elision

	Structures in Pycket
	RPython and Pycket
	Meta-tracing
	Pycket

	Optimization Steps
	Flat Structure
	Inlining
	Typed Cells for Mutability Separation

	Eliding Immutable Boolean Fields
	A Note on Unboxing
	Implementation Summary

	Evaluation
	Micro-benchmarks
	Basic Operations
	Binary Tree
	Parser

	Optimization Impact and Results
	Direct Mapping Approach
	General Optimizations
	Immutable Boolean Field Elision

	Limitations

	Related Work
	Conclusion and Future Work
	Appendix: Comprehensive Benchmark Results
	References

