
Parsing Composed Grammars with Language
Boxes

Lukas Diekmann and Laurence Tratt

Software Development Team, King’s College London
http://soft-dev.org/

Abstract. Parsing uncovers if, and how, an input stream conforms to a
grammar. Language composition requires combining grammars together,
yet all traditional parsing techniques have limitations when parsing com-
posed grammars. We augment an incremental parser with language boxes,
which allows us to retain the feel of traditional parsing whilst allowing
arbitrary grammar composition.

1 Introduction

Parsing is the act of taking a stream of textual input and uncovering its under-
lying structure with respect to a grammar, making later processing much easier.
Context Free Grammars (CFGs) are the pragmatic compromise which are most
commonly used in parsing—they are fairly expressive, while having a solid the-
oretical grounding which allows us to prove several desirable properties about
them. The two major approaches to CFG parsing are LL and LR parsing. Both
approaches can only parse restricted subsets of the CFGs, with the LR subset
being less restrictive than the LL subset. While LL parsers can be easily built
by hand (typically as recursive descent parsers), LR parsers require large tables
to be built, which requires tooling. LL and LR parsing approaches are fairly
efficient, while accepting a large enough subset of the CFGs to be usable for
programming languages. They are therefore the most commonly used parsing
approaches in compilers and related tools.

More recently, there has been renewed interest in languages whose syntaxes
can be changed or extended. Such languages come in several different forms
(e.g. using textual transformation [1], macros [2], or run-time meta-programm-
ing [3]). The basic idea is that languages can be composed together i.e. languages
A and B are formed to make a new language C (see [4] for some suggestions as
to different forms of language composition). Language composition raises many
thorny issues, and in this paper we tackle only one: what it means for parsing
composed grammars. Since A and B already have their own grammars, they
need to be ‘put together’ in order for C to have a valid parser.

It is commonly assumed that existing parsing approaches are already well
suited to this task, or can be made to do so relatively easily. Unfortunately, this
is not the case. Every major, extant parsing approach has compromises which
make it less than ideal for parsing with composed grammars. Some of these

http://soft-dev.org/

2 L. Diekmann, L. Tratt

compromises may be less commonly experienced and some are less severe, but
every approach has troubling corner cases.

We are drawn to conclude that arbitrary, safe language composition cannot
rely on traditional parser combination. Fortunately, there is a solution: Syntax
Directed Editing (SDE). Generally speaking, SDE systems do not allow users to
enter text at random: Abstract Syntax Tree (AST) elements are instantiated as
templates with holes, which are then filled in. This means that programs being
edited are always syntactically valid and unambiguous (though there may be
holes with information yet to be filled in). Since the SDE systems of the 70s and
80s were rejected by programmers as restrictive and clumsy, our challenge has
been to retain SDE’s benefits while ridding ourselves of its problems.

In this paper we extend Wagner and Graham’s incremental parsing algo-
rithm [5] with the new concept of language boxes. The resulting editor allows
users to compose languages in a way which retains SDE’s benefits whilst retain-
ing, in the general case, the feel of a normal text editor. A video of the editor in
action can be found at http://www.youtube.com/watch?v=LMzrTb22Ot8.

2 Parsing composed grammars

Since parsing using composed grammars is a largely unexplored area, there is
no good definition of exactly what is meant by that term. For this paper, two
conditions provide a reasonable intuition. First, a composed grammar must be
able to accept all the inputs of both its constituent grammars, though it need
not accept such inputs at the top-level; in other words, one language may be
embedded in another. Second, any meaningful composition will require ‘glue’ to
combine the two constituent grammars. CFG union is one example of a widely
known grammar composition operator which satisfies these criteria. In the rest
of this section we briefly survey the major design points in the parsing universe.

2.1 LL and LR parsing

LL and LR parsers are the most common type of parsers in practice and are thus
the natural place to start when considering parser composition. LR(k) are the
most powerful of this class and have the useful property that they accept only
unambiguous CFGs. However, Parikh’s theorem [6] shows that the composition
of two LR/LL grammars does not, in general, result in a valid LR/LL grammar.

2.2 Parsing arbitrary CFGs

It was not until the early 1970s that a practical algorithm for parsing the whole
class of CFGs was introduced by Earley [7]. It, and its descendents, seem well
suited to parsing composed grammars as we know that two composed CFGs
result in a valid CFG. However, parsing composed CFGs is problematic for
several reasons. The first relates to tokenization, the second to ambiguity.

Composed grammars may have conflicting tokenization rules. Scannerless
parsing [8] – a necessary prerequisite for most language composition – aims to

http://www.youtube.com/watch?v=LMzrTb22Ot8

Parsing Composed Grammars with Language Boxes 3

solve this, but the ‘reject’ rules of ASF+SDF can specify context sensitive lan-
guages, which change the guarantees that can be made about such grammars
in ways that are not yet fully understood [9]. Furthermore, combining tokeniz-
ers and parsers means that the resultant grammars are potentially ambiguous
e.g. due to the ‘longest match’ problem [10].

Even if tokenization issues were solved, the issue of ambiguity raises its head.
Ambiguity is disastrous for programming language tools, which can hardly ask
of a user “which parse of many did you intend?” Two unambiguous grammars,
when composed, may become ambiguous. However, we know that, in general,
we can not tell if an arbitrary CFG is ambiguous or not without trying all
the possible inputs [11]. Although heuristics for detecting ambiguity exist, all
existing approaches fail to detect at least some ambiguous grammars [12].

2.3 PEGs

Parsing Expression Grammars1 (PEGs) are a modern update of a classic parsing
approach [13]. Unlike the approaches previously discussed, PEGs have no relation
at all to CFGs. The chief reason for this is the PEG ordered choice operator
e1 / e2. This means ‘try e1 first; if it succeeds, the ordered choice immediately
succeeds and completes. Only if e1 fails should e2 be tried.’

PEGs are appealing for parsing composed languages because PEGs are closed
under composition and inherently unambiguous. However, the ordered choice
operator, which must be used when composing grammars, can cause the resulting
PEG not to parse inputs valid in its constituent grammars. Assume the LHS and
RHS of the ordered choice in the well known PEG S ::= a / ab are composed
grammars. If the LHS matches a, the ordered choice matches and returns success
to its container; the RHS is not given a chance to match anything, even if it could
have matched a longer input sequence.

3 Syntax directed editing

Because we can’t parse files written using composed languages reliably, language
composition has remained something of a pipe-dream. If a good solution to
editing composed languages cannot be found, the other problems that language
composition raises are irrelevant.

SDE offers a solution, because by working on an AST at all times, arbitrary
languages can be mixed together trivially. However, SDE tools of the 70s and 80s
(see e.g. [14,15]) were almost universally rejected by programmers as restrictive,
clumsy, and unnecessary. Fortunately for us, recent tools have shown that SDE
can be made much less restrictive and clumsy. Perhaps the best example is
JetBrain’s MPS system2, which provides a generic SDE environment into which
a reasonable variety of syntaxes can be combined. While the user experience
is good enough to be acceptable to some programmers as-is, it is considerably
different to using a traditional text editor.

1 Packrat parsers are an optimisation of PEGs, and thus of little interest to this paper.
2 http://jetbrains.com/mps/

4 L. Diekmann, L. Tratt

Fig. 1. The editor tool displaying a composed Java and SQL program. The two green
parsing statuses in the bottom left indicate that both the Java and SQL programs are
valid. The cursor is inside the SQL language box, so it is highlighted. On the right
(‘Parse Tree’) you can see a visualization of the parse tree, containing both Java (on
the left e.g. ‘primary’) and SQL (on the right e.g. ‘SELECT’) fragments.

4 Language boxes

Our solution to these problems is to extend the concept of incremental parsing,
an ‘online’ parsing approach which builds and maintains a parse tree (i.e. it still
contains tokens that might be considered unnecessary in an AST) as the user
types into an editor. In other words, parsing is a continuous activity, rather than
being performed occasionally as part of a compilation process.3 We use Wagner
and Graham’s incremental parsing algorithm [5] as our base.

We extend the incremental parser with language boxes, which are tokens with
arbitrary contents. This is different from traditional context free parsing, which
first tokenizes text into (type, value) pairs and then parses them into a parse
tree. We make use of a simple observation: while the value of a token is used
when deriving its type in the tokenization phase, the value is opaque to the
parsing phase (to do otherwise would be to make the parser context sensitive).
In an incremental parser, where a parse tree is persistent, we can then untangle
a token’s type from its value. Provided we can create a token of a given type,
its contents are irrelevant—we need not be constrained by the convention that
a token’s value is a sequence of ASCII/Unicode characters related to its type.
Language boxes are thus tokens whose value need have no relation to its type.

3 Although slower than using a non-incremental parser, an incremental parser can be
used to read in existing files.

Parsing Composed Grammars with Language Boxes 5

The resulting prototype editor is shown in Figure 1. Language boxes always
encompass their contents, growing as needed; a language box’s contents can
never leak to the outside. Since they must, in general, be manually created, they
force the user to explicitly disambiguate which language is which. They require
no special start or end markers to denote their existence; there is never any
possibility of ambiguity in composition; nor of text accidentally ‘leaking’ from
the language box. Users can, though, manually copy and paste code from inside a
language box to outside (and vice versa). In the basic version of the editor, each
language box has a ‘fresh’ incremental parser which is unaware of the existence
(or not) of an outer language box. Language boxes can be nested arbitrarily
deep, and any given language box can contain multiple nested language boxes
at different points. In general, language boxes are not explicitly highlighted,
because we hope that programs using composed grammars make sense without
the seams between grammars constantly being highlighted; however, moving the
cursor into a language box does highlight its extent.

Using language boxes, we can trivially solve the ‘classic’ grammar compo-
sition problem of allowing SQL expressions to be used wherever a Java RHS
expression can be used. Let us assume the existence of an SQL grammar named
SQL and a standard Java 1.5 grammar derived from the Java standard. We extend
the Java rule unary expression4 to reference the SQL grammar as follows:

unary_expression ::=
preincrement_expression | predecrement_expression | ... | <SQL>

Since one cannot type an <SQL> token in the normal fashion, pressing Ctrl+Space

opens up a drop-down box from which a language box of a given type can be
created; this implicitly creates a parse tree node of type SQL. Language boxes can
be placed anywhere the user desires, even where they are not, by the grammar’s
rules, syntactically valid. This loosens traditional SDE’s restrictions, and allows
users to edit files in any way they choose.

In a further departure from traditional editors, the only representation in our
editor is the parse tree. What looks like a standard textual GUI component on
the left of Figure 1 is actually a raw canvas, on which the text in the parse tree
is then manually rendered. Since language boxes are opaque nodes in the the
parse tree (akin to terminals), editors for non-textual languages can be used in
them. Our editor thus has experimental support for visualising, but not editing,
non-textual languages. Allowing editing of, and embedding within, non-textual
languages is one of our major future tasks.

5 Conclusions and future work

Language boxes allow us to achieve the benefits of SDE without the downsides.
Like SDE tools, language boxes make it possible to neatly sidestep the problems
associated with ambiguity (when parsing CFGs) and shadowing (when parsing

4 Because of the sheer size of the Java grammar, many other rules could also have
been used as the target.

6 L. Diekmann, L. Tratt

PEGs). Unlike normal SDE tools, language boxes only need to be used at the
boundary between composed languages: when not using language boxes, our
editor feels just like a normal text editor. Importantly, language boxes can have
non-incremental parser editors: non-textual languages are naturally supported.

The chief limitation of our approach is that the incremental parser is inher-
ently LR-based. For languages which need less restricted grammars, a language
box with a different parsing mechanism could be used. At worst, one can simply
embed an arbitrary parser in a language box. It may, however, be awkward to
allow nested language boxes in such a scenario.

An interesting challenge will be to see if, and to what degree, our editor
can automatically detect from the user’s input that a language box is needed..
Clearly, the theory from Section 2 tells us that this is impossible in general: it
remains to be seen whether it is practical in enough cases to be worthwhile, and
whether it feels like too much like ‘magic’ to be tolerable.

Acknowledgements: We thank Naveneetha Vasudevan and Edd Barrett
for comments. This research was graciously funded by a grant from Oracle.

References

1. M. Bravenboer and E. Visser, “Concrete syntax for objects. DSL embedding and
assimilation without restrictions,” in Proc. OOPSLA’04, Oct. 2004.

2. L. Tratt, “Domain specific language implementation via compile-time meta-
programming,” TOPLAS, vol. 30, no. 6, pp. 1–40, 2008.

3. C. Seaton, “A programming language where the syntax and semantics are mutable
at runtime,” Master’s thesis, University of Bristol, May 2007.

4. S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language composition untangled,”
in Proc. LDTA, 2012.

5. T. A. Wagner and S. L. Graham, “Efficient and flexible incremental parsing,” ACM
TOPLAS, vol. 20, pp. 980–1013, Sept. 1998.

6. R. J. Parikh, “On context-free languages,” J. ACM, vol. 13, pp. 570–581, Oct.
1966.

7. J. Earley, “An efficient context-free parsing algorithm,” Communications of the
ACM, vol. 13, Feb. 1970.

8. E. Visser, “Scannerless generalized-LR parsing,” Tech. Rep. P9707, Programming
Research Group, University of Amsterdam, July 1997.

9. J. van Eijck, “Let’s accept rejects, but only after repairs,” in Liber Amicorum Paul
Klint, pp. 117–128, Nov. 2007.

10. D. J. Salomon and G. V. Cormack, “Scannerless NSLR(1) parsing of programming
languages,” SIGPLAN Not., vol. 24, pp. 170–178, June 1989.

11. D. G. Cantor, “On the ambiguity problem of backus systems,” J. ACM, vol. 9,
pp. 477–479, Oct. 1962.

12. N. Vasudevan and L. Tratt, “Search-based ambiguity detection in context-free
grammars,” in Proc. ICCSW, pp. 142–148, Sept. 2012.

13. B. Ford, “Parsing expression grammars: a recognition-based syntactic foundation,”
in Proc. POPL, pp. 111–122, Jan. 2004.

14. W. J. Hansen, “User engineering principles for interactive systems,” in
Proc. AFIPS ’71, pp. 523–532, 1971.

15. T. Teitelbaum and T. Reps, “The Cornell program synthesizer: a syntax-directed
programming environment,” Commun. ACM, vol. 24, no. 9, pp. 563–573, 1981.

	Parsing Composed Grammars with Language Boxes

