
Detecting Ambiguity in Programming Language
Grammars

Naveneetha Vasudevan and Laurence Tratt

Software Development Team, King’s College London
http://soft-dev.org/

{naveneetha@yahoo.com,laurie@tratt.net}

Abstract. Ambiguous Context Free Grammars (CFGs) are problematic
for programming languages, as they allow inputs to be parsed in more
than one way. In this paper, we introduce a simple non-deterministic
search-based approach to ambiguity detection which non-exhaustively
explores a grammar in breadth for ambiguity. We also introduce two
new techniques for generating random grammars – Boltzmann sampling
and grammar mutation – allowing us to test ambiguity detection tools
on much larger corpuses than previously possible. Our experiments show
that our breadth-based approach to ambiguity detection performs as well
as, and generally better, than extant tools.

1 Introduction

Context Free Grammars (CFGs) are widely used for describing formal languages,
including Programming Languages (PLs). The full class of CFGs (grammars
from now on) includes ambiguous grammars—those which can parse inputs in
more than one way. Needless to say, ambiguous grammars are highly undesirable.
If an input can be parsed in more than one way, which one of those parses should
be taken? We would not enjoy using a compiler if it were to continually ask us
to choose which parse we want. Unfortunately, we know that, in general, it is
undecidable as to whether a given grammar is ambiguous or not [7]. While there
are various parsing approaches which allow a user to manually disambiguate
amongst multiple parses, one can not in general know if all possible points of
ambiguity have been covered. Perhaps because of this, most tools use parsing
algorithms such as LL and LR, which limit themselves to parsing only a subset
of unambiguous grammars. This leads to other trade-offs: grammars have to be
contorted to fit them within these subsets; and these subsets rule out the ability
to compose grammars [14].

As a consequence, there has been a steady stream of work trying to de-
tect ambiguity in arbitrary grammars, in order to bring most of the benefits
of the full class of CFGs without the disadvantages. Exhaustive methods such
as AMBER [12] systematically generate strings to uncover ambiguity, but for
even medium-sized grammars, this quickly leads to infinite state spaces. Ap-
proximation techniques, on the other hand, sacrifice accuracy for termination.
ACLA [5] transforms a language to an alternative whose accepted inputs are a

http://soft-dev.org/

2 N Vasudevan and L Tratt

Context-Free Grammars

PL grammars

Boltzmann

grammars

Mutated

PL grammars

Unambiguous

grammars

Fig. 1. An intuition about the relation between various classes of CFGs.

superset of the original; it never reports false negatives, but may report false
positives. Hybrid approaches marry approximation techniques with exhaustive
search. Basten’s hybrid approach [4] first applies a noncanonical unambiguity
test to filter out provably unambiguous portions of a grammar before running
AMBER on the result. However, such hybrid approaches still rely on an exhaus-
tive search, although on a smaller state space. Bounded length approaches are in
a sense a subset of exhaustive methods: they exhaustively explore a small, fixed
part of the search space. CFGAnalyzer [1] uses a SAT solver to explore strings
of bounded length. Cheung and Uzgalis’ method [8] deterministically expands
rules from the start terminal until a fixed bound is reached.

Whereas previous ambiguity detection approaches are deterministic and ex-
plore a grammar in ‘depth’, our hypothesis is that approaches which explore a
grammar in ‘breadth’ have a greater chance of discovering ambiguity. By depth
we mean that a subset of the grammar is explored in (possibly exhaustive) detail;
by breadth that a large portion of the grammar is explored but not exhaustively
so. In other words, we suspect that a scatter-gun approach to detecting ambigu-
ity will be more successful than a focused beam.

To that end, we have created a tool SinBAD which houses a number of am-
biguity detection approaches. This paper details one of SinBAD’s non-determin-
istic ambiguity detection algorithms which is intended to explore a grammar in
breadth rather than depth. The algorithm is extremely simple, with its core ex-
plained in less than a page. Despite the simplicity of the algorithm, experimental
results show that it performs at least as well as, and generally better than, more
complex deterministic approaches. Furthermore, good results are found more
quickly than by previous approaches.

Understanding the relation between grammars, and its various subsets is key
to understanding the motivation for, and the results of, our work. Figure 1 is our
attempt to give an intuition about these relations. Since all the sets involved are
infinite, this diagram is necessarily an approximation, but is hopefully helpful.
The set of unambiguous grammars is a strict subset of the grammars. Virtu-
ally all PL grammars reside within this unambiguous subset. Our underlying

Detecting Ambiguity in Programming Language Grammars 3

hypothesis is that PL grammars often stretch to the very edge of the class of
unambiguous grammars. Stated differently, we suspect that PL grammars are
often only a small step away from being ambiguous.

This paper also provides new techniques for evaluating the effectiveness of
ambiguity detection tools. We believe that evaluating such tools requires much
larger input corpuses than previously used: ours contains over 20,000 grammars
of various types. In order to generate such a large corpus, we cannot rely on
hand-written grammars. We therefore provide two classes of random grammars.
The first is generated using Boltzmann sampling, an approach which provides
some statistical guarantees about the randomness of the resulting generators.
The second class is generated by mutating existing PL grammars. This latter
category is particularly interesting as we, like most others working in this field,
are particularly interested in the ambiguity of PL-like grammars. There is an
inevitable problem with this: most PLs are written for approaches such as LR
parsing that accept only unambiguous grammars. Basten hand-modified 20 PL
grammars to be ambiguous [2] which we reuse in our suite for comparison pur-
poses. However, one can easily, and inadvertently, create a solution which works
well for such a small corpus but little beyond it. By generating a huge number
of possibly ambiguous PL-like grammars, we can explore a much wider set of
possibilities than is practical by hand.

To summarise, our work has two hypotheses:

H1 Covering a grammar in breadth is more likely to uncover ambiguity than
covering it in depth.

H2 PL grammars are only a small step away from being ambiguous.

The contributions of this paper are as follows. First, we show a new search-based
approach to ambiguity detection, which is simpler than previous approaches. Sec-
ond, we provide new means of evaluating the effectiveness of ambiguity tools by
providing the ability to produce large quantities of grammars using Boltzmann
sampling and grammar mutation. Third, we provide the first large-scale evalua-
tion of such tools. In so doing, we show that our simple search-based approach
performs at least as well as, and generally better than, existing tools. The basic
idea of our search-based approach was first presented in a workshop paper [15].
This paper extends that with Boltzmann sampled grammars, grammar muta-
tion, and a significantly larger experiment. SinBAD, the grammar generators,
the grammar corpus we used, and the results obtained can be downloaded from
our experimental suite:

http://figshare.com/articles/cfg_amb_experiment/774614

The structure of this paper is as follows. In Section 3 we describe our search-based
approach to ambiguity detection. Sections 4 and 5 describe our algorithms for
generating Boltzmann and mutated grammars respectively. In Section 6 we set
out the methodology for our experiment, which is split into 3 sub-experiments.
In section 10 we consider our hypotheses in the light of our experimental results.

http://figshare.com/articles/cfg_amb_experiment/774614

4 N Vasudevan and L Tratt

Sentence

Generator

Grammar

artefacts

Sentence
Earley

parser

Parsed

output Yes

No

No

StopAmbiguous?

 Time

exceeded?

<Backend 1>

<Backend 2>

<Backend n>

uses

Yes

Stop

Fig. 2. SinBAD architecture.

2 Definitions

Before presenting our algorithms and descriptions, we first introduce some brief
definitions (mostly standard) and notations.

A grammar is a tuple G = 〈N,T,P,S 〉 where N is the set of non-terminals, T
is the set of terminals, P is the set of production rules over N × (N ∪T)* and S
is the start non-terminal of the grammar. A production rule A: α is denoted as
P [A] where A ∈ N, and α is a sequence of strings drawn from (N∪T)*.Nε denotes
set containing non-terminals that have at least one empty alternative. For a rule
P [A], P [A]alt denotes a single alternative and ΣP [A]alt all its alternatives. We
define the size of a grammar as size(G) = |N |. We define a sentence of a grammar
as a string over T *. A sentence is ambiguous if it can be parsed in more than one
way. A grammar is ambiguous if there exists a sentence which is both accepted
and ambiguous. We define ‘symbol’ to mean either a terminal or a non-terminal.

For a list `, let `[i] denote the element at position i, and `[i:j] the items
from positions i (inclusive) to j (exclusive). Let insert(`, i, α) denote insertion
of α into ` at position i and delete(`, i) denote deletion of element from ` from
position i. Let append(`, α) denote appending element α to list `. For a dictionary
D containing key-value pairs, D[x 7→ a] denotes an update to key x with value
a, D[x] denotes a lookup of key x, Dvalues denotes its list of values. Let R(`,n)
denote a list of n items chosen randomly from the list `. Further, let R[m..n]
denote a number chosen randomly between m (inclusive) and n (inclusive).

3 Search-based ambiguity detection

Search-based techniques seek to find ‘good enough’ solutions for problems that
have no feasible algorithmic solution and whose search space is too big to ex-
haustively scan. Such techniques have been applied to a wide range of problems
including software itself (see e.g. [9]). Search-based techniques are either random
or guided by a fitness function.

In order to apply search-based techniques to ambiguity detection, we created
SinBAD, a simple tool with pluggable backends. Figure 2 shows SinBAD’s ar-
chitecture. Given a grammar and a lexer, the Sentence Generator component

Detecting Ambiguity in Programming Language Grammars 5

generates random sentences using a given backend. A backend, in essence, is an
algorithm that governs how sentences are generated. For instance, a backend can
use a unique scoring mechanism to favour an alternative when expanding a non-
terminal, or one that can generate sentences of bounded length. The generated
sentence is then fed to a parser to check for ambiguity (we use ACCENT [11],
a fast Earley parser for this). The search stops when an ambiguity is found or
when a time limit is exceeded. In this paper we consider the most successful
SinBAD backend we have created so far: dynamic1 1.

3.1 The dynamic1 backend

Given a grammar, the dynamic1 backend shown in Algorithm 1 non-determin-
istically creates a valid sentence which can then be used to test for ambiguity.
In essence, the algorithm continually picks random alternatives to follow for
sentence generation, recursing into the grammar. However, doing this naively
leads to frequent non-termination [15]. Therefore, the backend is parameterised
by a user-configurable integer D2. Once the algorithm has recursed beyond depth
D, it favours alternatives which immediately terminate (i.e. rules that contain no
non-terminals). When this is not possible – some rule’s alternatives all contain
non-terminals – the favouritism then chooses whichever rules have been least
visited. In this way, the generator tends not only to terminate in reasonable
time, but also to explore a grammar’s rules semi-uniformly.

The function START is initialised with a user-defined grammar G and thresh-
old depth D. The current depth d is set to zero. We initiate sentence generation
by deriving the start symbol S of the grammar. We keep a note of when we have
entered a rule and when we have exited. To derive a non-terminal, we randomly
select one of its alternatives (line 11). When the depth of the recursion exceeds
a certain threshold depth, we start favouring alternatives (lines 8 and 9).

The FAVOUR-ALTERNATIVE function is called when the algorithm wishes
to try and terminate. Given a rule, the function generates a score for each al-
ternative and the one with the lowest score is selected. In the event of a tie, one
of the lowest scoring alternatives is arbitrarily selected. Terminals are scored as
0. Non-terminals are scored as a ratio of the number of derivations that haven’t
been fully derived yet to the total number of derivations (line 30).

dynamic1 ’s simplicity means that our experimental corpus has uncovered
a handful of cases (1.4% of grammars in the corpus) where it doesn’t termi-
nate. This is due, in an unintended irony, to the one deterministic part of
dynamic1 : the favouring of alternatives. When FAVOUR-ALTERNATIVE is
called, it scores rules, selects those with the equal lowest score, and then non-
deterministically picks amongst them. If one alternative always has the lowest
score, then it will be picked every time. Consider the rules P: Q and Q: P | R
S. If, at a given point of time, the scores for the first and second alternatives

1 For a discussion of some other backends, see [15].
2 Setting D to ∞ provides equivalent behaviour to the naive non-terminating ap-

proach.

6 N Vasudevan and L Tratt

Algorithm 1 The dynamic1 algorithm

1: function start(G, D)
2: Sen ← ∅
3: generate(P [S], G, Sen, d = 0, D)
4: return Sen
5: end function

6: function generate(P [A], G, Sen, d, D)
7: P [A].entered ← P [A].entered + 1
8: if d ≥ D then
9: P [A]alt ← favour-alternative(P [A], G)

10: else
11: P [A]alt ←R(ΣP [A]alt, 1)
12: end if
13: for Sym ∈ P [A]alt do
14: if Sym ∈ N then
15: Sen ← Sen + generate(P [Sym], G, Sen, d+ 1, D)
16: else
17: Sen ← Sen + Sym
18: end if
19: end for
20: P [A].exited ← P [A].exited + 1
21: d← d− 1
22: end function

23: function favour-alternative(P [A], G)
24: scores ← { }
25: scores ← {scores[alt 7→ 0] | alt ∈ ΣP [A]alt}
26: for P [A]alt ∈ ΣP [A]alt do
27: for Sym ∈ P [A]alt do
28: if Sym ∈ N then
29: if P [Sym].entered > 0 then
30: scorealt ← scorealt + (1− (P [Sym].exited/P [Sym].entered))
31: end if
32: end if
33: end for
34: scores← scores[P [A]alt 7→ scorealt]
35: end for
36: altsmin ← {alt ∈ ΣP [A]alt | scores[alt] = min(scoresvalues)}
37: return R(altsmin , 1)
38: end function

of rule Q are <1 and >1 respectively, then the alternative favouring will always
select the first alternative, as it has the lowest score. We briefly outline a possible
solution for this in Section 12.

Detecting Ambiguity in Programming Language Grammars 7

Cfg = Cfg Rule ... Rule

Rule = SingleAlt Alt | RuleAlts1 Rule Alt

Alt = EmptyAltSyms | SingleAltSyms1 Symbol | AltSyms1 Alt Symbol

Symbol = NonTerm NonTerm | Term Term

NonTerm = NonTerm1 | NonTerm2 | ... | NonTermN

Term = Term1 | Term2 | ... | TermN

Fig. 3. Tree specification for generating grammars.

4 Boltzmann sampled grammars

Boltzmann sampling is a framework for random generation of combinatorial
structures (see [6] for further details). The basic idea is to give the sampler a
class specification of a combinatorial structure and a value to control the size
of the generated objects. For a given class C, and size n, the sampler provides
approximate-size uniform random generation—objects are generated with ap-
proximate size n±ε, where ε is a fixed tolerance, but objects of the same size
occur with equal probability. This allows the sampler to generate large objects in
linear time. In this section we provide the first Boltzmann sampler for grammars.

4.1 Class specification

A Boltzmann sampler class specification is a grammar containing a set of pro-
ductions. A production is of the form: A: 〈rhs〉, where A is the name of the class
being defined and 〈rhs〉 is a set of definitions. A definition is of the form DefX

Y, where DefX denotes a constructor and Y is either a reference to a definition
(if a definition Y exists) or a literal otherwise.

Since, as far as we are aware, this is the first time that Boltzmann sampling
has been used to generate grammars, we were forced to create a class specification
ourselves. Determining a good class specification is arguably the hardest part of
Boltzmann sampling, and is complicated by the fact that grammars do not have
a single, obvious specification. Furthermore, since grammars are unbounded in
size, we necessarily have to restrict the size of the those generated to make using
them practical. This immediately leads us to a difficult question: what style
of grammars do we want? In reality, we are most interested in grammars which
somewhat resemble PL grammars. Generating grammars with 2 rules containing
100 alternatives each may tell us something about grammars in general – though
getting enough coverage to say something useful may be much harder – but little
about programming languages. We have therefore crafted our use of Boltzmann
sampling to lead to grammars which roughly resemble real PLs. In order to do
this, we are forced to apply post-filters to restrict the grammars generated to
those we are most interested in, as we shall soon see.

Our class specification is shown in Figure 3. Using [10] as a guiding principle,
our specification is designed to give us control over three things: the number
of empty alternatives, the number of alternatives per rule, and the number of
symbols per alternative. Cfg denotes a context-free grammar, Rule a production

8 N Vasudevan and L Tratt

rule, Alt a production alternative, and Symbol denotes either a non-terminal (a
NonTerm) or a terminal (a Term) symbol. A CFG consists of 1 or more production
rules (hence the references to multiple Rule definitions). Rule has two outcomes:
it can either be called recursively to build a list of alternatives; or just build a list
with single alternative. Alt has three choices: it can either be called recursively to
build a sequence of symbols; or just build a sequence with one symbol (middle
choice); or an empty string (EmptyAltSyms). The specification enforces equal
numbers of NonTerms and Terms in a grammar, the 1:1 ratio seeming to us a
reasonable heuristic based on our observations of real grammars.

While we do not claim that our specification is perfect, it is the result of
considerable experimentation and the resulting grammars are close to those we
might expect to see for PLs. Minor variations to the specification can lead to sig-
nificantly differing “styles” of grammars being generated. For instance: replacing
SingleAlt Alt by EmptyAlt would cause a much higher percentage of empty
alternatives to be generated.

4.2 Precision

A Boltzmann sampler is parameterised by two values that control the size of
the generated objects: singular precision and value precision. To get an efficient
sampler, these two values need to be set as low as possible [6]. However, the lower
these values are, the greater the likelihood of large objects being generated. This
is a problem for us, as “large” means rules would have more alternatives and
symbols per alternative than we desire. The challenge, then, is to find values that
generate large numbers of relevant grammars in reasonable time. We settled on
values of 1.0e-7 and 1.0-e-4 for the singular and value precisions respectively.

4.3 Grammar generation and filtering

Our Boltzmann class specification gets us in the rough neighbourhood of PL
grammars, but some obvious differences remain. We also struggled to generate
grammars of all sizes that we wished for.

The sampler struggled to generate grammars when we restricted the number
of symbols per alternative to 5, so we relaxed this criterion. Approximately 10–
15% of alternatives from each grammar generated by the sampler have more
than 5 symbols per alternative.

Similarly, the sampler tends to generate a much larger number of empty al-
ternatives than are typical of PL grammars. Using Basten’s PL grammar corpus
as an example, the proportion of empty alternatives varied between 4% (Java)
to 12% (Pascal). We therefore wrote a filter to remove all grammars that had a
proportion of empty alternatives above 5%. Such filters are needed if one wishes
to generate PL-like grammars.

Because the sampler is unaware of the precise semantics of grammars, it
can and does produce grammars which are non-sensical or trivially ambiguous.
We filter out all grammars which contain non-terminating cycles of the form A:

B and B: A as they consume no input and generate the empty language. We

Detecting Ambiguity in Programming Language Grammars 9

also filter out grammars which contain alternatives with the same sequence of
symbols (e.g. A: X | X | ...) which are trivially ambiguous.

We wanted to generate grammars of size ranging from 10 to 50 inclusive.
However, the sampler was unable to generate any grammars for sizes 16, 20, 25,
26, 29, 32, 40, 42, and 49. This can be solved by making the precision greater
than 0.005, but this causes other issues (see Section 4.2), so we did not do so.

5 Mutated grammars

Random grammar generators have one major problem from our perspective:
even if they produce grammars in the general style of those used by PLs, it can
be reasonably argued that they are never close enough. Of course, exactly what
is close enough is impossible to pinpoint: it seems unlikely that any metric, or
set of metrics, can reliably classify PL vs. non-PL grammars. Instead, we have
little choice but to fall back on the intuitive notion that “we know one when we
see one.” This means that past work has struggled to understand how ambiguity
affects PL-like grammars: we simply can’t get hold of enough of them to perform
adequate studies. The best attempt of which we are aware is the work of Basten,
who took 20 unambiguous PL grammars and manually altered them to introduce
ambiguity [3]. Manually altering grammars is tedious, hard to scale, and always
open to the possibilities of unintentional human bias.

We have therefore devised a simple way of generating arbitrary numbers of
‘PL-like’ grammars with possible ambiguity. Our approach to grammar mutation
bears no relation to grammar evolution or grammar recovery. Instead, our basic
tactic is inspired by Basten’s manual modifications: we take in a real (unam-
biguous) grammar for a PL and perform a single random alteration to a single
rule. Although there are numerous possible mutations, we restrict ourselves to
the following four, each of which is applied to a single rule:

Add empty alternative This is only possible if a rule does not already have
an empty alternative.

Mutate symbol Randomly select a symbol from an alternative and change it.
A non-terminal can be replaced by a terminal and vice versa.

Add symbol Randomly pick an alternative and add a symbol at a random
place within it.

Delete symbol Randomly delete a symbol from an alternative. Only non-
empty alternatives are considered.

Our mutated grammars are therefore identical to a real PL grammar, with only
a single change. This is the best way that we can imagine of solving the “we
know it when we see it” problem. As we will see later, these simple mutations
introduce a surprising number of ambiguities. The full algorithm is presented in
Appendix A.

10 N Vasudevan and L Tratt

6 Experiment methodology

The objective of our experiment is to understand how well search-based ap-
proaches perform in detecting ambiguities. Since ambiguity is inherently unde-
cidable, it is impossible to evaluate such a tool in an absolute sense. Instead, we
evaluated our tool against three others: ACLA, AMBER, and AmbiDexter [3].
Each tool takes a different approach: ACLA uses an approximation technique;
AMBER uses an exhaustive search; AmbiDexter uses a hybrid approach; and
SinBAD uses a random search-based approach.

All the tools except ACLA have run-time options which adjust the way they
operate and thus affect which ambiguities they find. We believe the fairest com-
parison is between the tools at their best and that we need to use the “best”
run-time option values possible. However, discovering what the best options are
by trying all possibilities on our full set of grammars is prohibitively expensive.
Instead, we first run a “mini” experiment on a small set of grammars to de-
termine good tool options. We do not claim that the option values discovered
necessarily allow each tool to operate at its maximum potential; rather, we be-
lieve that they allow the tool to operate close enough to its maximum potential
to make a meaningful comparison.

Using the run-time options determined by the mini experiment, we then run
the “main” experiment on a larger set of grammars (about 7 times bigger) with
each tool. Finally, we check that the proportion of grammars discovered as am-
biguous scales up, by running a “validation” experiment using only dynamic1 on
a larger set of grammars again (about 5 times bigger than the main experiment).

Since grammars can specify infinite languages, grammar ambiguity tools can
run forever. We are therefore also interested in how long it takes each tool to
give quality results. For the mini and main experiments, we therefore run each
tool for 10, 30, 60, and 120 seconds, enforcing the limit with the timeout tool.
For AMBER the parser generation time is not included in the limit, whereas
for SinBAD it is (as we were unable to break the two apart). Since this time is
rather small (0.4s), we believe it does not unduly colour the results.

We evaluated the various tools on three different sets of grammars: Boltz-
mann sampled, altered PL grammars, and mutated grammars. Boltzmann sam-
pled grammars were described in Section 4. Basten’s altered PL grammars are
taken from [4], where Pascal, SQL, Java, and C grammars were manually mod-
ified to produce 5 ambiguous variations of each. The mutated grammars were
described in Section 5. Table 1 shows the size of the grammar sets used in each
experiment. For the Boltzmann sampled grammars, each size (10-50) is repre-
sented equally (i.e. for the main experiment, 50 grammars of each size are used).
Similarly, for the mutated grammars, each mutation category (add empty alter-
native, mutate symbol, add symbol, and delete symbol) is equally represented
(e.g. for the main experiment, 500 grammars from each category are used). Note
that we are not worried about differences in the ambiguous fragments identified:
we care only whether a tool uncovers ambiguity in a grammar or not.

All experiments were performed on a cluster of identical Intel i7-2600 CPU
3.4GHz machines with 8GiB memory. For the mini experiment, where perfect

Detecting Ambiguity in Programming Language Grammars 11

Mini Main Validation

Boltzmann 384 1600 9600
Altered PL 20 20 20
Mutated 160 2000 11200

Total 564 3620 20820

Table 1. The number of grammars used in the various experiments.

Tool Option Values

AMBER Search by length 5, 10, 15, 20, 25, 50, 100
Search by example 1010, 1020, 1030

Ellipsis Yes / No
AmbiDexter From 0 to N 5, 10, 15, 20, 25, 50, 100

From N to ∞ 0
Filter None, LR0, SLR1, LALR1, LR1

dynamic1 Depth 5, 6, 7, ..., 30

Table 2. Options tried in the mini experiment.

precision was not necessary, we used 8 cores (4 real and 4 hyperthreading) per
machine. For the main and validation experiments, where precision is important,
we disabled hyperthreading and restricted ourselves to utilising 3 cores per ma-
chine. We used parallel3 to parallelise our experiment. The experiments took
around 3400 core-hours in total, broken down into: 600 hours for the mini ex-
periment; 2000 for the main experiment; and 800 for the validation experiment.

Our experimental setup is fully repeatable and is available through our down-
loadable experimental suite.

7 Mini experiment

In the mini experiment, we wish to uncover what reasonable values for various
options are. ACLA has no options, so does not to be considered further. The
options and their values tried for the other tools are outlined in Table 2.

AMBER can search either by length (sentences up to a fixed length) or by
example (search limited by number of sentences with no restriction on sentence
length). The ‘ellipsis’ option causes non-terminals to be treated as tokens, which
increases the chances of finding long ambiguous fragments. We found that in
most cases, turning on the ‘ellipsis’ option led to better results: 22 with it set
vs. 18 without. Only for the ‘add empty alternative’ variant of mutated grammars
did the ellipsis option perform worse.

3 http://www.gnu.org/software/parallel

12 N Vasudevan and L Tratt

Grammar set ACLA AMBERa AmbiDexterb dynamic1 c

Boltzmann n/a ell+N=1010 ik+unf D=11
Altered PL n/a ell+len=10 k=15+LR0 D=9
Mutated n/a len=15 k=15+SLR1 D=17

a ell, len, N , AMBER options ellipsis, length and examples respectively.
b ik, k, unf , AmbiDexter options incremental length, maximum length of

sentences to check, unfiltered version of a grammar respectively.
c D , Threshold depth for dynamic1.

Table 3. Best performing options for each tool.

AmbiDexter has two modes of sentence generation: searching for sentences
up to length N , or searching for sentences from a starting length N to ∞.
AmbiDexter also supports filters that can identify and remove provably unam-
biguous subsets of a grammar. These filters are of varying power: LR0 (low) to
LR1 (high). The more powerful a filter is, the greater the portion of a grammar
it can filter out, but the longer it takes to do so. We evaluated the tool with
both unfiltered and filtered versions of a grammar. Generating a filtered version
of a grammar is included in the time limit.

SinBAD’s dynamic1 backend requires a depth option D to determine when
it should attempt to unwind recursion. We evaluated D for values from 5 to
30. For lower values of D, dynamic1 starts favouring alternatives much earlier,
and therefore sentences are short and quick to generate. For higher values of D,
dynamic1 generates longer sentences. In the cases where dynamic1 ’s sentence
generator did not terminate, we re-ran it (in such cases, the normal time limit
still applied, preventing infinite re-runs).

The values we chose for the mini experiment were based on our experience
of using the tools in question, and our need to choose a reasonable subset of
options in order to have a tractable experiment. To check that the values we
chose were not biased against the tools, we performed a brief sanity check on
each of the ‘best’ values found, checking several of its near neighbours. Only with
AMBER was there a measurable difference (when searching by example). Using
a value of 1010 with the ‘search by example’ option, 238 Boltzmann sampled
grammars were found to be ambiguous; with a value of 108, 240 were found to
be ambiguous. For the mutated grammars, 1010 found 6 ambiguities whereas 107

found 7 ambiguities. In both cases, the differences are sufficiently small to make
us comfortable with sticking with the original values.

Table 3 lists the best performing options for each tool. All the data involved
are available from our downloadable experimental suite.

8 Main experiment

The main experiment is the largest cross ambiguity detection tool experiment
to date. All the data involved are available from our downloadable experimental
suite.

Detecting Ambiguity in Programming Language Grammars 13

10 30 60 120
400

600

800

1,000

1,200

Time [seconds]

A
m

b
ig

u
it

ie
s

fo
u

n
d

Boltzmann sampled grammars (1600)

ACLA

AMBER (ell +N = 1010)

AmbiDexter (ik + unf)

dynamic1 (D = 11)

Fig. 4. Number of ambiguities found for Boltzmann sampled grammars.

Figures 4, 5, and 6 show the results of our experiments for each grammar set,
for each time limit. In analysing some of the results from the main experiment,
we had to perform additional experiments. In most cases, we used grammars
from the main experiment. In only one case, for collecting data for sentence and
ambiguous fragment length, have we used grammars from the mini experiment.

Our results from the main experiment indicated that three of our grammar
sets were highly ambiguous: Boltzmann sampled (70%), the ‘add empty alterna-
tive’ mutated grammars (60%), and ‘delete symbol’ mutated grammars (45%).
Manual observation of ambiguous grammars led to two observations:

Cyclic ambiguity Rules that contain cycles of the form (A: A | ...) or (A:
B | ...; B: A | ...) contribute to cyclic ambiguity [13]. We manually cal-
culated the percentage of cyclically ambiguous grammars to be: 22% (Boltz-
mann sampled), 0% (Altered PL), and 0.009% (Mutated). This appears to
be by far the most common type of ambiguity we encounter.

Multiple ambiguity A grammar has multiple ambiguity if it has more than
one ambiguous subset. 36% of Boltzmann grammars contained 2.5 ambigu-
ities per grammar. For mutated grammars the figures are: 37% and 2.8 for
‘add empty alternative’; 13% and 3 for ‘mutate symbol’; 4% and 2.7 for ‘add
symbol’; and 23% and 2.6 for ‘delete symbol’.

In the rest of this section, we explore what the results mean for each tool (in
alphabetical order).

8.1 ACLA

Given a grammar, ACLA will report it to be ambiguous, unambiguous, or pos-
sibly ambiguous (that is, it is unsure if the grammar is ambiguous). ACLA’s
approach to ambiguity detection is based on two linguistic properties: vertical
and horizontal ambiguity. Vertical ambiguity means that during the parsing of

14 N Vasudevan and L Tratt

10 30 60 120

5

10

15

20

Time [seconds]

A
m

b
ig

u
it

ie
s

fo
u

n
d

Altered PL grammars (20)

ACLA

AMBER (ell + len = 10)

AmbiDexter (k = 15 + LR0)

dynamic1 (D = 9)

Fig. 5. Number of ambiguities found for altered PL grammars.

ACLA AMBER AmbiDexter dynamic1

Sen Amb Sen Amb Sen Amb Sen Amb

Boltzmann - 15 58 14 27 21 1554664 2671
Altered PL - 11 10 9 15 15 281 88
Mutated - 15 15 6 15 15 4392 502

Table 4. Maximum sentence (‘Sen’) and ambiguous fragment (‘Amb’) length detected
by each tool using the options from Table 3. Note: we were unable to determine the
sentence length for ACLA.

a string, there is a choice between the alternatives of a non-terminal. Horizontal
ambiguity means that, when parsing a string according to a production alterna-
tive, there is a choice in how the string can be split.

For Boltzmann and mutated grammars, ACLA reported only one or two
grammars to be unambiguous. On average across the grammar sets, ACLA was
unsure whether 50–60% of the grammars were ambiguous or not. ACLA did
not detect 12% of cyclically ambiguous grammars as being ambiguous. ACLA
detects ambiguity in a grammar by iterating through each non-terminal, and
checking its language for vertically or horizontally ambiguous strings. Although
it is not clear what sort of string length it searches for, the length of ambiguous
fragments that it detects, on average, ranges between 10 and 15 (see Table 4).
In most cases, where the ambiguous subset is deeply nested, ACLA is unsure
if the grammar is ambiguous. For most grammar sets, ACLA reaches a point
of diminishing returns at 120s. Only in the case of mutated grammars, did our
results (see Figure 6) seem to indicate that given additional time, ACLA might
uncover further ambiguities. Running ACLA for an extended time limit of 240s
only uncovered in 4 additional ambiguities being found.

Detecting Ambiguity in Programming Language Grammars 15

10 30 60 120
145

190

235

280

325

Time [seconds]

A
m

b
ig

u
it

ie
s

fo
u

n
d

Add Empty (500)

10 30 60 120

20

40

60

80

100

120

Time [seconds]

Mutate Symbol (500)

10 30 60 120

15

30

45

60

75

Time [seconds]

A
m

b
ig

u
it

ie
s

fo
u
n

d

Add Symbol (500)

10 30 60 120

80

120

160

200

240

Time [seconds]

Delete Symbol (500)

ACLA AMBER (len = 15)

AmbiDexter (k = 15 + SLR1) dynamic1 (D = 17)

Fig. 6. Number of ambiguities found for mutated grammars.

8.2 AMBER

AMBER performs extremely well on the Boltzmann grammars, but less well on
manually altered or mutated grammars. AMBER uses an exhaustive approach
to ambiguity detection, whereby it systematically enumerates strings for a given
grammar, and checks for ambiguity. There are two possible reasons why AM-
BER does well on Boltzmann grammars. First, these grammars contain multiple
ambiguities, and a relatively high percentage of cyclically ambiguous grammars.
AMBER was quick to detect these ambiguities. Second, the ambiguous subsets
found are easily reachable, in the sense that they are referenced from very near
the start of the grammar. For instance, in the case of Java.1, where the am-
biguous subset originates from the rule compilation unit, which is close to the

16 N Vasudevan and L Tratt

start rule, and AMBER is quick to find it. In the case of Pascal.2, where the
ambiguous subset originates from within an expression rule set (term) – that
is, frequently referenced – AMBER is quick to find it. However, for some of
the nested ambiguous subsets (as in Pascal.3, which contains a nested if-else
ambiguous subset), AMBER struggles.

8.3 AmbiDexter

AmbiDexter is effective for PL (altered and mutated) grammars, but is less ef-
fective for Boltzmann grammars. AmbiDexter does well on PL grammars for
two reasons. First, PL grammars contain short ambiguous subsets (see Table 4)
and AmbiDexter’s exhaustive search, whereby it checks for short strings exhaus-
tively, is quick to find it. Second, its filtering of unambiguous fragments was
very effective on PL grammars. For mutated grammars, where SLR1 was the
best performing filter, the percentage of rules filtered out were 60% (Pascal),
90% (SQL), and 24% (Java) and 20% (C), whereas for Boltzmann grammars,
it was 19%. There was a noticeable difference in (SLR1) filtering time between
mutated (1.3s) and Boltzmann grammars (0.7s). Since AmbiDexter uses an ex-
haustive approach, it struggles when the ambiguous subsets are long and deeply
nested.

8.4 dynamic1

As Table 4 indicates, compared to other tools, dynamic1 generates much longer
sentences, and therefore, it does well, in detecting long and deeply nested am-
biguous subsets. For lower values of the dynamic1 ’s depth option, sentences are
short and quick to generate; higher values generate longer sentences.

Since dynamic1 uses a non-deterministic approach, there can be significant
variation in the sentence and ambiguous fragment length from run to run. The
set of grammars discovered as ambiguous by dynamic1 is sometimes different
than other tools. For 111 of the Boltzmann and 2 of the mutated grammars that
ACLA found ambiguous, dynamic1 failed to do so; for AMBER, 4 Boltzmann
and 2 mutated PL grammars; for AmbiDexter, 2 Boltzmann and 8 mutated
grammars. Some of the grammars amongst these sets are common, but by no
means all.

Of the 111 Boltzmann grammars for which ACLA detected ambiguity and
dynamic1 failed to detect any, 110 of them contained ambiguous subsets that
were unreachable from the start rule. For instance, a grammar with rules root:
’p’ and A: ’q’ | ’q’ contains an ambiguous subset that is unreachable from
the start rule. Since ACLA’s approach to ambiguity detection is by searching
for ambiguous strings for each non-terminal, it can detect ambiguities that are
unreachable from the start rule. We did not anticipate our Boltzmann sampler
generating such non-sensical grammars, and recommend that future experiments
filter them out. The remaining one grammar for ACLA, and the grammars
for AMBER and AmbiDexter, contained common subsets, totalling 4 Boltz-
mann grammars. For 2 of them, dynamic1 did not terminate, exited and re-ran

Detecting Ambiguity in Programming Language Grammars 17

(roughly 500 times for one of the grammars). For the remaining two grammars,
one of them contained a short but deeply nested ambiguous subset, whereas for
the other the ambiguous fragment was long and, for D=11 (the best perform-
ing option for Boltzmann grammar), dynamic1 didn’t generate sufficiently long
sentences to uncover ambiguity.

For the mutated grammar set, dynamic1 didn’t detect ambiguity for a total
of 9 grammars for which the other tools detected ambiguity. For 4 of these
grammars, the ambiguous subsets were short but deeply nested. For 2 of these
grammars, the ambiguous fragments were long, and D=17 (the best performing
option for mutated grammars) did not generate sufficiently long sentences to
uncover ambiguity. The remaining 3 grammars were cyclically ambiguous, and
dynamic1 ’s sentence generator did not terminate for them.

9 Validation experiment

In order to ensure that the results of Figures 4, 5, 6 scale to larger sets of
grammars, we used dynamic1 to perform a validation experiment on a much
larger set of grammars (see Table 1). The number of ambiguities found for 120
seconds were 70% (Boltzmann) and 63%, 21%, 13%, and 45% (for mutated
types: add empty alternative, mutate symbol, add symbol and delete symbol
respectively). The proportion of ambiguities found in our validation experiment
is close to the number of ambiguities found in the main experiment (see Figures 4
and 6). All the data involved are available from our experimental downloadable
suite.

10 Validating the hypotheses

In Section 1, we stated two hypotheses which informed our work. In this section,
we revisit the hypotheses in the light of our results.

Hypothesis H1 postulates that “covering a grammar in breadth is more likely
to uncover ambiguity than covering it in depth.” dynamic1 ’s non-deterministic
approach tends to naturally generate sentences which cover much larger por-
tions of a grammar than previous approaches. It is therefore more successful at
uncovering ambiguity against our grammar corpus than other tools. Although
non-determinism clearly plays its part, we believe that dynamic1 ’s coverage is
key and strongly validates hypothesis H1.

Hypothesis H2 postulates that “PL grammars are only a small step away
from being ambiguous.” The mutated grammars are our attempt to explore this
hypothesis and as the validation experiment shows, just over a third of mutations
to real PL grammars result in dynamic1 detecting ambiguity. This proportion
is a lower-bound: it is possible that there is further ambiguity in the mutated
grammars that dynamic1 (and, indeed, any other tool) does not discover. We
consider this validation of hypothesis H2.

18 N Vasudevan and L Tratt

11 Threats to validity

The most obvious threat to the validity of our results are the grammars used.
In a previous experiment [15] we used a hand-written generator to create

random grammars. In this paper we created a Boltzmann sampler to reduce the
chances of bias in our hand-written generator. Interestingly, this made relatively
little difference to the number of ambiguous grammars we found. However, it
is impractical to generate completely arbitrary grammars, since they have no
size limit. Our Boltzmann specification is therefore geared towards generating
grammars which are “somewhat PL like”. It is possible that it still produces
overly biased grammars, particularly as we are forced to use filters to remove
some grammars we consider irrelevant or unrepresentative. Our current Boltz-
mann sampler can create grammars which have subsets of rules which are not
reachable from the start rule; ironically, these grammars penalise dynamic1 rel-
ative to other ambiguity tools such as ACLA. However, we believe that, overall,
it is more trustworthy than any previous random grammar generator.

The mutated grammars are also a potential threat to validity as we might
have chosen unrepresentative grammars as a base. Since they come from an
external source, we have some level of confidence in them.

The final threat to validity is our use of a mini experiment to determine a
reasonable set of run-time options for the various tools used. It is possible that
the grammars used in the mini experiment were unrepresentative of those used
in the main experiment, though our measurements suggest this is unlikely. The
percentage of ambiguous Boltzmann grammars were 67% (mini) and 70% (main).
The percentage of ambiguous mutated grammars (add empty alternative, mutate
symbol, add symbol, delete symbol) were mini (60%, 30%, 10%, and 42%) and
main (63%, 22%, 13%, and 46%).

12 Conclusions

In this paper, we introduced the concept of a search-based approach to CFG
ambiguity detection with the SinBAD tool and its dynamic1 backend. Using
the largest grammar corpus to date, we showed that dynamic1 can detect a
larger number of ambiguities than previous approaches. The key to its success
is its use of non-determinism, which has several surprising consequences. It frees
us from having to design many complex heuristics. dynamic1 ’s only heuristic
relates to the need to terminate the sentence generator. In turn, this allows
dynamic1 to explore a much larger portion of a grammar than by previous
approaches and it increases the chances of detecting ambiguous fragments nested
deep within a grammar. In essence, our results suggest that covering the breadth
of a grammar’s state space is more important than covering it in depth.

dynamic1 ’s chief weakness is that its single deterministic point causes it not
to terminate on some grammars. We suspect that a probabilistic approach which
gives a lower chance to frequently derived alternatives – in other words, which
makes it less likely, but not impossible, that they are picked – will make non-
termination less likely whilst preserving dynamic1’s general approach.

Detecting Ambiguity in Programming Language Grammars 19

We also introduced two new ways of generating large grammar corpuses:
Boltzmann sampling and grammar mutation. The grammars created using Boltz-
mann sampling were highly ambiguous and thus not entirely representative of
PL grammars. The mutated grammars, on the other hand, are representative of
PL grammars although how ambiguous they are depends on the mutation. Our
results indicate that certain mutations tend to cause grammars to be highly am-
biguous whereas others less so. Our experience suggest that for uses that require
exploring wide class of grammars, one should use Boltzmann sampling whereas,
uses that require exploring PL grammars, one should use grammar mutation.

Acknowledgements. We are extremely grateful to Alexis Darrasse (LIP6) for
his advice in creating a Boltzmann sampler specification. We thank the Depart-
ment of Informatics at King’s College for giving extended access to computing
facilities. Edd Barrett and Carl Friedrich Bolz gave insightful comments on drafts
of this paper.

References

1. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an
incremental sat solver. In: Proc. ICALP 2008. pp. 410–422 (2008)

2. Basten, H.J.S.: Ambiguity Detection Methods for Context-Free Grammars. Mas-
ter’s thesis, Universiteit van Amsterdam (Aug 2007)

3. Basten, H.J.S., van der Storm, T.: Ambidexter: Practical ambiguity detection. In:
Proc. SCAM 2010. pp. 101–102 (2010)

4. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In:
Proc. LDTA. pp. 5:1–5:9 (2010)

5. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. Science of Computer Programming 75(3), 176–191 (Mar 2010)

6. Canou, B., Darrasse, A.: Fast and sound random generation for automated testing
and benchmarking in objective caml. In: Proc. Workshop on ML. pp. 61–70 (2009)

7. Cantor, D.G.: On the ambiguity problem of backus systems. Journal of the ACM
9(4), 477–479 (1962)

8. Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars. In: Proc. SAC.
pp. 272–276. ACM (1995)

9. Harman, M.: The current state and future of search based software engineering.
In: FOSE. pp. 342–357 (2007)

10. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation of
huge metamodel instances. In: ECMDA-FA. pp. 130–145 (2009)

11. Schröer, F.W.: Accent, a compiler compiler for the entire class of context-free
grammars. Tech. rep. (2000), http://accent.compilertools.net/Accent.html

12. Schröer, F.W.: Amber, an ambiguity checker for context-free grammars. Tech. rep.
(2001), http://accent.compilertools.net/Amber.html

13. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proc. IJCAI. pp. 756–764 (1985)

14. Tratt, L.: Parsing: The solved problem that isn’t. Hacker Monthly pp. 37–42 (Jun
2011)

15. Vasudevan, N., Tratt, L.: Search-based ambiguity detection in context-free gram-
mars. In: Proc. ICCSW. pp. 142–148 (Sep 2012)

20 N Vasudevan and L Tratt

A Mutated grammar generation algorithm

Algorithm 2 shows how we generate a mutated version of a grammar. µtype ∈
{empty,mutate, add, delete} indicates the type of mutation to be performed for
a given grammar. The function MUTATE-GRAMMAR first creates a deep copy
of the grammar. For the ‘add empty alternative’ mutation, we first identify
non-terminals which do not already have an empty alternative (line 4), before
randomly selecting one, and adding an empty alternative. For mutations of type
‘add symbol’ we randomly select a non-terminal, before randomly selecting one
of its alternatives. From the selected alternative, we randomly pick a position
and insert a randomly selected symbol from V (line 12). For mutation s of type
‘mutate symbol’ and ‘delete symbol’, we randomly select a non-terminal, before
randomly selecting one of its non empty alternatives. To mutate a symbol, we
randomly pick a position from the selected alternative and replace it with a
randomly selected symbol from V (line 18). To delete a symbol, we randomly
pick a position from the selected alternative, and delete it (line 20).

Algorithm 2 An algorithm to generate a mutated version of a grammar

1: function mutate-grammar(G, µtype)
2: Gc ← copy(G) . Gc = 〈Nc,Tc,Pc,Sc〉
3: if µtype = empty then
4: Nψ ← {A ∈ Nc | A /∈ Nε }
5: A←R(Nψ, 1)
6: ΣP [A]alt ← append(ΣP [A]alt , [])
7: else
8: A←R(Nc, 1)
9: if µtype = {add} then

10: alt ←R(ΣP [A]alt , 1)
11: k ←R[0,|alt |)
12: alt ← insert(alt , k,R(V, 1))
13: else if µtype ∈ {mutate, delete} then
14: alts ← {alt ∈ ΣP [A]alt | |alt | > 0 }
15: alt ←R(alts, 1)
16: k ←R[0,|alt |-1)
17: if µtype = {mutate} then
18: alt [k]←R(V, 1)
19: else
20: alt ← delete(alt , k)
21: end if
22: end if
23: end if
24: return Gc
25: end function

	Lecture Notes in Computer Science
	Introduction
	Definitions
	Search-based ambiguity detection
	The dynamic1 backend

	Boltzmann sampled grammars
	Class specification
	Precision
	Grammar generation and filtering

	Mutated grammars
	Experiment methodology
	Mini experiment
	Main experiment
	ACLA
	AMBER
	AmbiDexter
	dynamic1

	Validation experiment
	Validating the hypotheses
	Threats to validity
	Conclusions
	Mutated grammar generation algorithm

