
The case for the Three R’s of Systems Research:

 Repeatability
Reproducibility

& Rigor

Jan Vitek

Kalibera, Vitek.Repeatability, Reproducibility, and Rigor in Systems Research. EMSOFT11

In 2006, Potti&Nevins claim they can predict lung cancer

In 2010, papers retracted, bancruptcy, resignations & investigation

Bad science ranging from fraud, unsound methods, to off-by-one
errors in Excel

Uncovered by a repetition study conducted by Baggerly&Coombes with
access to raw data and 2,000 hours of effort

Science Done Bad

Out of 122 papers in  
ASPLOS, ISMM, PLDI, TACO, TOPLAS

90 evaluated execution time based on experiments

71 of these 90 papers ignored uncertainty

Parameter Core 2 Pentium 4 m5 O3CPU
Operating System Linux 2.6.25 Linux 2.4.21 NA
Tool Chain gcc 4.1.3, icc 10.1 gcc 4.2.1 gcc 4.1.0
Measurement papi-3.5.1 / perfmon-2.8 papi-3.0.8 / perfctr-5.2.16 NA
Micro-architecture Core NetBurst Alpha
Clock Frequency 2.4 GHz 2.4 GHz 1GHz
memory 8G 2G 512M
L1 32K Ins., 32K Data 12K Ins. 8K Data 32K Ins. 64K Data
L2 128K Unified 512K Unified 2M Unified
L3 4096K NA NA
TLB entries 512 64 48 Ins. 64 Data

Table 2. Description of the machines used in our study to show the effects of measurement bias.

3.3 Following best practices

With all aspects of our measurements we attempted to be
as careful as possible. In other words, the measurement bias
that we demonstrate later in the paper is present despite our
following best practices.

• Except in the experiments where we add environment
variables, we conducted our experiments in a minimal
environment (i.e., we unset all environment variables that
were inessential).

• We conducted all our experiments on minimally-loaded
machines, used only local disks, and repeated each ex-
periment multiple times to ensure that our data was rep-
resentative and repeatable.

• We conducted our experiments on two different sets of
hardware and (when possible) one simulator. This way
we ensured that our data was not an artifact of the partic-
ular machine that we were using.

• Some Linux kernels (e.g., on our Core 2) randomize the
starting address of the stack (for security purposes). This
feature can make experiments hard to repeat and thus we
disabled it for our experiments.

4. Measurement Bias is Significant and
Commonplace

This section shows that measurement bias is significant and
commonplace. By significant we mean that measurement
bias is large enough to lead to incorrect conclusions. By
commonplace we mean that it is not an isolated phenomenon
but instead occurs for all benchmarks and architectures that
we tried.

We quantify measurement bias with respect to the fol-
lowing question: how effective are the O3 optimizations in
gcc? By “O3 optimizations” we mean optimizations that O3

introduces (i.e., it does not include optimizations that carry
over from O2).

4.1 Measurement bias due to link order

We first show the measurement bias due to link order for all
benchmarks and then discuss one potential cause for it on
one benchmark.

linking order

0.95

1.00

1.05

1.10

d
e

fa
u

lt
a

lp
h

a
b

e
tic

a
l 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

cy
cl

e
s(

O
2

)
/

cy
cl

e
s(

O
3

)
(a) Perlbench

0.95

1.00

1.05

1.10

g
cc

lib
q
u
a
n
tu

m

p
e
rl
b
e
n
ch

b
zi

p
2

h
2
6
4
re

f

m
cf

g
o
b
m

k

h
m

m
e
r

sj
e
n
g

sp
h
in

x

m
ilc

lb
m

●
●

●

●

● ●
● ●

●

●

●

●

default
alphabeticalcy

cl
e
s

(O
2
)

/
cy

cl
e
s

(O
3
)

(b) All Benchmarks

Figure 2. The effect of link order on Core 2.

4.1.1 The extent of measurement bias

Figure 2 (a) explores the effect of link order on the speedup
of O3 for perlbench. To obtain this data, we compiled perl-
bench 33 times; the first time we used the default link order
(as specified by the make file), the second time we used an
alphabetical link order (i.e., the .o files appeared in alpha-
betical order), and the remaining times we used a randomly
generated link order. A point (x, y) in Figure 2 (a) says that
for the xth link order we tried, the speedup of O3 was y. For
each point, we conducted five runs each with O2 and O3 ;
the whiskers give the 95% confidence intervals of the mean.

268

Mytkowicz, Diwan, Hauswirth, Sweeney. Producing Wrong Data
Without Doing Anything Obviously Wrong! ASPLOS’09

Out of 122 papers in  
ASPLOS, ISMM, PLDI, TACO, TOPLAS

90 evaluated execution time based on experiments

71 of these 90 papers ignored uncertainty

This lack of rigor undermines the results

Yet, no equivalent to the Duke Scandal.

Are we better?  
Is our research not worth reproducing?  
Is our research too hard to reproduce?

Repetition
… re-doing the same experiments on the same system and using
the same evaluation method

Reproduction
…independent researcher implements/realizes the published
solution from scratch, under new conditions

Is our research hard to repeat ?
Is our research hard to reproduce ?

Goal

Break new ground in

hard real-time concurrent
garbage collection

Aparté

GC in 3 minutes

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Incrementalizing marking

Collector marks object

Application updates
reference field

Compiler inserted  
write barrier marks object

Incrementalizing compaction

Forwarding pointers refer to the current version of objects

Every access must start with a dereference

copy

original

Obstacles
No real-time benchmarks for GCed languages

No clear competition, two GC algorithms claim to be best

No accepted measurement methodology

No open source experimental platform for comparison

Step 1

Develop an open source experimental platform
Picked the Real-time Specification for Java

First generation system, about 15 man/years
Flew on a Boeing ScanEagle

Second generation system, about 6 man/years
Competitive with commercial JVMs

A	Real-(me	Java	Virtual	Machine	for	Avionics.	TECS,	2006

Observations
Results on noncompetitive systems not relevant

Much of work  
went into a  
credible  
research  
platform 

Step 2
Develop an open source benchmark 

Collision Detector Benchmark  
In Java, Real-time Java, and C (Linux/RTEMS)

Measure response time, release time jitter  
Simulate air traffic control  
Hard RT collision detector thread  
Scalable stress on garbage collector

About 1.5 man/years

A	family	of	Real-(me	Java	benchmarks.	CC:PE	2011

Observation

Understanding what you measure is critical

Running on a real embedded platform and real-time OS,
difference between Java & C small…

Good news?

No. The LEON3 lacks a FP unit, & the benchmark is FP intensive...

Step 3

Gain experience with the state of the art
Experiment with different GC techniques  

GC in uncooperative environment  
Brooks forwarding 
Object replication  
Object handles

About 2 man/years

Accurate	Garbage	Collec(on	in	Uncoopera(ve	Environments.	CC:P&E,	2009
Hierarchical	Real-(me	Garbage	Collec(on.	LCTES,	2007
Replica(ng	Real-(me	Garbage	Collector.	CC:P&E,	2011
Handles	Revisited:	Op(mising	Performance	and	Memory…	ISMM,	2011

Observation
Trust but verify, twice. 

From workshop to journal, speed 30% better

Good news?

Later realized switching to GCC 4.4 slowed baseline (GCC
didnÊt inline a critical function)

Once accounted for this our speed up was 4%⁄

A correction was issued...

Step 4
Reproduce state of the art algorithms  
from IBM and Oracle  

Metronome, Sun Java RTS

Choose measurement methodology 
Existing metric (MMU) inadequate

About 3 man/years

Scheduling	Real-Time	Garbage	Collec(on	on	Uniprocessors.	TOCS	2011
Scheduling	Hard	Real-(me	Garbage	Collec(on.	RTSS	2009

Observation
Reproduction was difficult because of
closed-source implementations &
partial description of algorithms

Repetition was impossible because no
common platform

Step 5

Develop a novel algorithm  
Fragmentation tolerant 
Constant-time heap access

About 0.6 man/years

Schism: Fragmenta0on-Tolerant Real-Time Garbage Collec0on.	PLDI	2011

Schism: objects

Avoid external fragmentation by splitting objects in 32-byte chunks

split
object

normal
object

Schism: arrays

For faster array access, array = variable sized spine  
 + 32-byte chunk payload

spine

normal
array

payload

Experimental platform 21 man/years

Benchmark 2 man/years

Implementing basic techniques 2 man/years

Reproduction of state-of-the art 
+measurement methodology 3 man/years

Implementing novel algorithm 0.6 man/years

In summary,  
28 m/y reproduction  
 .6 m/y novel work 

Rigor

Cater for random effects, non-determinism  
Repeat experiment runs, summarize results  
Threat to validity detectable by failure to repeat

Guard against bias 
Use multiple configurations, hardware platforms  
Threat to validity detectable by failure to reproduce  

Jain:	The	Art	of	Computer	Systems	Performance	Analysis
Lilja:	Measuring	Computer	Performance,	A	Prac((oner’s	Guide
Evaluate	Collaboratory,	http://evaluate.inf.usi.ch/

Repeatability

Enable repetition studies

Archival  
Automate and archive

Disclosure  
 Share experimental details

Reproducibility

Community support for focused reproductions 
Open benchmarks and platforms

Reward system for reproductions 
Publish reproduction studies  
Regard them as 1st class publications  

Paper
Artifact  

(code, data, etc.)

uses

backs
claims

(c) Camil Demetrescu

Key ideas

Program
Committee

Artifact
Evaluation
Committee

(c) Camil Demetrescu

Key ideas

Artifact
Evaluation
Committee

PhD
students
postdocs

Senior  
co-chairs

+

(c) Camil Demetrescu

Authoritative site: http://www.artifact-eval.org/
(c) Camil Demetrescu

Criteria

(c) Camil Demetrescu

Consistent with the Paper
We can

turn iron
into gold

Paper

Artifact

(c) Camil Demetrescu

Complete

(c) Camil Demetrescu

Easy to Reuse

vs.

(c) Camil Demetrescu

Well Documented

(c) Camil Demetrescu

(c) Camil Demetrescu

2 AEC co-chairs
24 AEC members
3 reviews per AEC member
3 reviews per artifact

Statistics from OOPSLA’13

50 papers accepted
21 artifacts submitted
18 accepted

(c) Camil Demetrescu

+
Software, 
data, etc.

Artifact  
key info

Title
Authors

Abstract

Metadata  
(DOI, etc.)
Scope,  
content, 
license,  
etc.

Artifact
publication

(c) Camil Demetrescu

Artifact

DOI
cross-ref

Paper

First-class
citizen!

AEC
badge

(c) Camil Demetrescu

artifact

paper

Artifacts as  
first-class

citizens

(c) Camil Demetrescu

Conclusions

Develop open source benchmarks

Codify documentation, methodologies & 
 reporting standards

Require executable artifacts

Publish reproduction studies

