The case for the Three R’s of Systems Research:

Repeatabi |1ty
Reproducibi lity
& R1gOr

Jan Vitek

<albera, Viek Repeatability, Reproducibility, and Rigor in Systems Research. EMSOFT | |

Scie‘life Done Bad

In 2006, Potti&Nevins claim they can predict lung cancer

In 2010, papers retracted, bancruptcy, resignations & investigation

Bad science ranging from fraud, unsound methods, to off-by-one
errors in Excel

Uncovered by a repetition study conducted by Baggerly&Coombes with
access to raw data and 2,000 hours of effort

nature, .
medicine

lheg[yw H

Out of 122 papers in
ASPLOS, ISMM, PLDI, TACO, TOPLAS

90 evaluated execution time based on experiments

/1 of these 90 papers ignored uncertainty

g’ B [Iheury il
(e - I e cumpulalmn .

: IuI"Iwﬁ" *-‘III}IIIIIIIIIIIIIII -y = SO S

2)
o)
8 1.05 1
(@)
S <4
O 1.00 S22 ==
D
Q + default
© 0.95 - X alphabetical
I I I I I I I I I I I I
QO E £ N F B X § D X O E
S 3 2 £ 5 £ E g § £ E o
s 9 2 8 S E 2 &
S5 = < o < @
O ()]
O o

Miytkowicz, Diwan, Hauswirth, Sweeney. Producing Wrong Data
Without Doing Anything Obviously Wrong! ASPLOS’09

theg[y

T iy gl s e COTDUES
Wathemaical . it gn!] mplﬂmg g Bﬂ[]lﬂqe”ﬂﬂ i
syslems 7 "=

Out of 122 papers in
ASPLOS, ISMM, PLDI, TACO, TOPLAS

90 evaluated execution time based on experiments

/1 of these 90 papers ignorec

uncertainty

This lack of rigor undermines the results

Yet, no equivalent to the Duke Scandal.

Are we better?

Is our research not worth reproducing?
Is our research too hard to reproduce?

Reproduction

...independent researcher implements/realizes the published
solution from scratch, under new conditions

lheg[y

Repetition
... re-doing the same experiments on the same system and using
the same evaluation method

Is our research hard to repeat ?
Is our research hard to reproduce !

TRUE
STORIES Goal

Break new ground in

hard real-time concurrent
garbage collection

Aparte

GC in 3 minutes

Garbage Collection

Phases

e Mutation

/,
=0

¥

D Cb@

PP
/

[/

v
"H3a
22

CC
@O%

0
10

thread#l hea thread#2

Garbage Collection

Phases

N\
O
O

e Stop-the-world

:
¢

OOB0
R
D

C

C

O O O

thread#l heap thread#2

Garbage Collection

Phases

e Root scanning

threadi#l thread#2

Garbage Collection

Phases

e Marking

threadi#l thread#2

Garbage Collection

S22
8 . O
—~ O L e Marking
9§ s
— O O O

thread#l thread#2

(=2
v
o

Garbage Collection

Phases
O
- o
O O
— O
O O O O e Sweeping
OO

thread#l heap thread#2

Garbage Collection

Phases
O
- o
O O
— O
O O O O e Sweeping
OO

thread#l heap thread#2

Garbage Collection

Phases

O0L000
0000000

e Compaction

thread#l heap thread#2

Incrementalizing marking

O O-0

Incrementalizing compaction

e Forwarding pointers refer to the current version of objects

e bEvery access must start with a dereference

¢) @—»?) original
/

copy

TIT
STORIES Obstacles

No real-time benchmarks for GCed languages
No clear competition, two GC algorithms claim to be best
No accepted measurement methodology

No open source experimental platform for comparison

TRUE
STORIES Step |

Develop an open source experimental platform

First generation system, about |5 man/years
ALTAA
Second generation system, about 6 man/years

F L)
Systems Inc.

A Real-time Java Virtual Machine for Avionics. TECS, 2006

Observations

Results on noncompetitive systems not relevant

Much of work Spec/]YM98

went |nto) HotSpot 1.6 Server
| IBM |9
C red | b I S Sun Java RTS 2.1 Fastest Fiji collector
researc h IBM Metronome SRT \
FijiVM CMR
Platfo 'm FijiVM Schism/cmric <« Fiji f;lar(‘:cti RT
FijiVM Schism/cmrla coilector
FijiVM Schism/cmricw <—‘> worSt'Case
simulators

0 0/ 02 03 04 05 06 07 08 09 1.0
throughput relative to

&

[RUE
SORES Step 2 |,

Develop an open source benchmark —

Collision Detector Benchmark
In Java, Real-time Java, and C (Linux/RTEMS)

Measure response time, release time jitter

Simulate air traffic control
Hard RT collision detector thread
Scalable stress on garbage collector

About |.5 man/years

A family of Real-time Java benchmarks. CC:PE 2011

Obsenvation

Understanding what you measure is critical

Running on a real embedded platform and real-time OS,
difference between Java & C small...

Good news!

No. The LEON3 lacks a FP unit, & the benchmark is FP intensive...

[RUE
OB Step 3
Gain experience with the state of the art

A1

new copy old copy

Experiment with different GC techniques

O

B

nnnnn PY new copy old copy

About 2 man/years

Accurate Garbage Collection in Uncooperative Environments. CC:P&E, 2009
Hierarchical Real-time Garbage Collection. LCTES, 2007

Replicating Real-time Garbage Collector. CC:P&E, 2011
Handles Revisited: Optimising Performance and Memory... ISMM, 2011

Obsenvation

Trust but verify, twice.

From workshop to journal, speed 30% better

Good news?

Later realized switching to GCC 4.4 slowed baseline (GCC
didn’t inline a critical function)

Once accounted for this our speed up was 4%...

A correction was issued...

LLls
SORES Step 4 |

Reproduce state of the art algorithms = =i ™
from IBM and Oracle

Choose measurement methodology

LALTE | JUALEE | IR A4 Nl ¥ L LA LY L L | KL

e L T o
- e e el el e e e el e e e e e e e e I T rr— e y—

AbOUt3man/years '}###ﬂﬂ#‘#ﬂ'**********

Scheduling Real-Time Garbage Collection on Uniprocessors. TOCS 2011
Scheduling Hard Real-time Garbage Collection. RTSS 2009

Obsenvation

Reproduction was difficult because of
closed-source implementations &
pantial description of algorithms

Repetition was impossible because no
common platform

[RUE e

STORKS Step 5 i -

Develop a novel algorithm

About 0.6 man/years ;"

Schism: Fragmentation-Tolerant Real-Time Garbage Collection. PLDI 2011

Schism: objects

e Avoid external fragmentation by splitting objects in 32-byte chunks

normal
- object
split
O—O object

Schism: arrays

e For faster array access, array = variable sized spine
+ 32-byte chunk payload

normal
() array

spine

D D payload

T N summary,
28 m/y reproduction
.6 m/y novel work

Experimental platform 2|1 manl/years
Benchmark 2 man/years
Implementing basic techniques 2 man/years

Reproduction of state-of-the art
+measurement methodology 3 man/years

Implementing novel algorithm 0.6 manl/years

= (Z 2)
E((,OP N
)
. 2y (B T o)
. = (*) qaax 2 Y 02‘
\ ‘/X 2 N /KLTJO\ o5 "
E &ﬂ e ~YokT
= 7\ 1= \ _A Y)
ne o //\
S

Cater for random effects, non-determinism

Repeat experiment runs, summarize results
Threat to validity detectable by failure to repeat

Guard against bias

Use multiple configurations, hardware platforms
Threat to validity detectable by failure to reproduce

d Jain: The Art of Computer Systems Performance Analysis
| Lilja: Measuring Computer Performance, A Practitioner’s Guide
Evaluate Collaboratory, http://evaluate.inf.usi.ch/

Repeatability

Enable repetition studies

Archival
Automate and archive

Disclosure
Share experimental details

Reproducibility

Community support for focused reproductions
Open benchmarks and platforms

Reward system for reproductions
Publish reproduction studies
Regard them as st class publications

[RUE
STURIES

The Correspondence Principle
for Idempotent Calculus and
some Computer Applications

Grigori L. Litvinov and Victor P. Maslov

1 Introduction

‘This paper is devoted to heuristic aspects of the so-called idempotent cal-
culus. There is & correspondence between important, useful and interest-
ing constructions and results over the field of real (or complex) numbers
and similar constructions and results over idempotent semirings, in the spirit
of N. Bohr’s correspondence principle in Quantum Mechanics. Idempotent
analogs for some basic ideas, constructions and results in Functional Anal-
ysis and Mathematical Physics are discussed from this point of view. Thus
the correspondence principle is a powerful heuristic tool to apply unexpected
analogies and ideas borrowed from different areas of Mathematics and Theo-
retical Physics.

Tt is very important that some problems nonlinear in the traditional sense
(for example, the Bellman equation and its generalizations and the Hamilton~
Jacobi equation) turn out to be linear over a suitable semiring; this linearity
considersbly simplifies the explicit construction of solutions. In this case we
have a natural analog of the so-called superposition principle in Quantum
Mechanics (see [1]-{3]).

The theory is well advanced and includes, in particular, new integration
theory, new linear algebra, spectral theory and functional analysis. Appli-
cations include various optimization problems such as multicriteria decision
‘making, optimization on graphs, discrete optimization with a large parameter
(asymptotic problems), optimal design of computer systems and computer
media, optimal organization of peralle] data processing, dynamic program-

‘ming, discrete event systems, computer science, discrete mathematics, math- 0 O 0 1
ematical logic and so on. See, for example, [4]-{64). Let us indicate some

applications of these ideas in mathematical physics and biophysics [65)-[70).

In this paper the correspondence principle is used to develop an approach
to object-oriented software and hardware design for algorithms of idempotent
calculus and scientific calculations. In particular, there is regular method
for constructing back-end processors and technical devices intended for an
implementation of basic algorithms of idempotent calculus and mathematics

01 BB

Cambridge Books Online © Cambridge University Press

(c) Camil Demetrescu

[RUE
STURIES

01 &3

0110
0001
01101

Artifact
Evaluation
Committee

Program
ommittee

(c) Camil Demetrescu

TIT
STIRIS Key ideas

Senior
Artifact co-chairs
Evaluation |
Committee +
PhD
students

postdocs

(c) Camil Demetrescu

[RUE
STURIES

(c) Camil Demetrescu

[RUE

—W_! Criteria

(c) Camil Demetrescu

Con5|sl:enl: W|th the Paper

E W ecan
turn |ron

Paper

Artifact

(c) Camil Demetrescu

Complete

(c) Camil Demetrescu

Easy to Reuse

(c) Camil Demetrescu

Well Documented

(c) Camil Demetrescu

(c) Camil Demetrescu

[RUE
STURIES

Statistics from OOPSLA®13

2 AEC co-chairs

24 AEC members

3 reviews per AEC member
3 reviews per artifact

18 accepted
21 artifacts submitted

50 papers accepted

(c) Camil Demetrescu

[RUE
STURIES

€COOP

Prag

TreatJS: Higher-Order Contracts for JavaScript

(Artifact)

Matthias Keil and Peter Thiemann
Institute for Computer Science

University of Freiburg

Freiburg, Germany

{keilr,thiemann}@informatik.uni-freiburg.de

— Abstract

TreatJS is a language embedded, higher-order con-
tract system for JavaScript which enforces con-
tracts by run-time monitoring. Beyond providing
the standard abstractions for building higher-order
contracts (base, function, and object contracts),
TreatJS’s novel contributions are its guarantee of
non-interfering contract execution, its systematic
approach to blame assignment, its support for con-
tracts in the style of union and intersection types,
and its notion of a parameterized contract scope,

TreatJS is implemented as a library so that
all aspects of a contract can be specified using
the full JavaScript language. The library relies
on JavaScript proxies to guarantee full interposi-
tion for contracts. It further exploits JavaScript’s
reflective features to run contracts in a sandbox
environment, which guarantees that the execution
of contract code does not modify the application
state. No source code transformation or change in
the JavaScript run-time system is required.

Artifact

publication

N ﬁk

Software, Artifact
data, etc. key info

which is the building block for composable run-
time generated contracts that generalize dependent
function contracts.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Higher-Order Contracts, JavaScript, Proxies

Digital Object Identifier 10.4230/DARTS.1.1.1

Related Article Matthias Keil and Peter Thiemann, “TreatJS: Higher-Order Contracts for JavaScript”,
in Proceedings of the 29th European Conference on Object-Oriented Programming (ECOOP 2015),
LIPIcs, Vol. 37, pp. 28-51, 2015.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.28

Related Confé 29th E: C on Object-Oriented Programming (ECOOP 2015), July
5-10, 2015, Prague, Czech Republic

1 Scope

The artifact is designed to support repeatability of all the experiments of the companion paper,
allowing users to test the contract system on a variety of benchmarks. In particular, it allows to
include TreatJS in existing JavaScript code, to specify contracts by plain JavaScript functions, to
construct contracts by an unrestricted combination of other contracts, and to enforce contracts in
all contexts of use.

2 Content

The artifact package includes:

the main source of TreatJS;

a set of test cases to examine the feature of the contract system;

modified version of the Google Octaine 2.0 benchmark suite;

detailed instructions for using the artifact, provided as an index.html file.
© Matthias Keil and Peter Thiemann;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 1, Issue 1, Artifact No. 1, pp. 01:1-01:2

DAGSTUHL Dagstuhl Artifacts Series
ArTiFacTs series Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Title
Authors

— Abstrac

_ Metadata
(DO, etc.

Scope,

—— content,
license,
etc.

(c) Camil Demetrescu

TreatJS: Higher-Order Contracts for JavaScript

Matthias Keil and Peter Thiemann

Institute for Computer Science

University of Freiburg

Freiburg, Germany
{keilr,thiemann}@informatik.uni-freiburg.de

—— Abstract
TreatJS is a language embedded, higher-order contract system for JavaScript which enforces
contracts by run-time monitoring. Beyond providing the standard abstractions for building
higher-order contracts (base, function, and object contracts), TreatJS’s novel contributions are its
guarantee of non-interfering contract execution, its systematic approach to blame assignment, its
support for contracts in the style of union and intersection types, and its notion of a parameterized
contract scope, which is the building block for composable run-time generated contracts that
generalize dependent function contracts.

TreatJS is implemented as a library so that all aspects of a contract can be specified using the
full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition
for contracts. It further exploits JavaScript’s reflective features to run contracts in a sandbox en-
vironment, which guarantees that the execution of contract code does not modify the application
state. No source code transformation or change in the JavaScript run-time system is required.
The impact of contracts on execution speed is evaluated using the Google Octane benchmark.

1998 ACM Subject Classification D.2.4 Software/Program Verification
Keywords and phrases Higher-Order Contracts, JavaScript, Proxies
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2015.28

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.1.1.1

1 Introduction

A contract specifies the interface of a software component by stating obligations and benefits
for the component’s users. Customarily contracts comprise invariants for objects and com-
ponents as well as pre- and postconditions for individual methods. Prima facie such contracts
may be specified using straightforward assertions. But further contract constructions are
needed for contemporary languages with first-class functions and other advanced abstractions.
These facilities require higher-order contracts as well as ways to dynamically construct
contracts that depend on run-time values.

Software contracts were introduced with Meyer’s Design by Contract™ methodology
[39] that stipulates the specification of contracts for all components of a program and the
monitoring of these contracts while the program is running. Since then, the contract idea
has taken off and systems for contract monitoring are available for many languages [33, 1,
37, 32, 12, 22, 11, 10] and with a wealth of features (35, 31, 7, 20, 46, 16, 2|. Contracts are
particularly important for dynamically typed languages as these languages only provide

© Matthias Keil and Peter Thiemann;

I licensed under Creative Commons License CC-BY
29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 28-51
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Ger

Py Pe,

DOI
cross-ref

TreatJS: Higher-Order Contracts for JavaScript

(Artifact)

Matthias Keil and Peter Thiemann
Institute for Computer Science

University of Freiburg
Freiburg, Germany
{keilr,thiemann}@informatik.uni-freiburg.de

— Abstract
TreatJS is a language embedded, higher-order con-
tract system for JavaScript which enforces con-
tracts by run-time monitoring. Beyond providing
the standard abstractions for building higher-order
contracts (base, function, and object contracts),
TreatJS’s novel contributions are its guarantee of

I't,‘fa

TreatJS is implemented as a library so that
all aspects of a contract can be specified using
the full JavaScript language. The library relies
on JavaScript proxies to guarantee full interposi-
tion for contracts. It ther exploits JavaScript’s

reflective feature m contracts in a sandbox

~n-interfering contract execution, its sys matic environment, - wrantees that the execution
apy. “~ blame assignment, its suppor n- of contract a0t modify the application
tracts w ~f union and interser state. M .ransformation or #h=~ e in
and its nota. ~rized cor

which is the bu

" First-class

19%..

Keywords a.]]

= citizen!

Re* u ‘avaScript”, r
e+ wucoumgs of the 29 N P 2015),

LIPIcs, Vol. 37, pp. 28-F

http://dx.doi.org/10 -«C8.. 8

Related Conference 7 _..suropean Coi Object-On.
5-10, 2015, Prague, Czech Republic

ramming (ECOOP .. July

1 Scope

The artifact is designed to support repeatability of all the experiments of the col
allowing users to test the contract system on a variety of benchmarks. In partic
include TreatJS in existing JavaScript code, to specify contracts by plain JavaScri
construct contracts by an unrestricted combination of other contracts, and to enforce cor
all contexts of use.

2 Content

The artifact package includes:

= the main source of TreatJS;

= a set of test cases to examine the feature of the contract system;

= modified version of the Google Octaine 2.0 benchmark suite;

= detailed instructions for using the artifact, provided as an index.html file.
© Matthias Keil and Peter Thiemann;

licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 1, Issue 1, Artifact No. 1, pp. 01:1-01:2

DAGSTUNL Dagstuhl Artifacts Series
artiFacts senies Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

(c) Camil Demetrescu

Artifacts as
dblp First-class
citizens

"l Jonathan Aldrich 4 1 & < ®

> Home > Persons

[-] Person information

= affiliation: Carnegie Mellon University, Pittsburgh, USA

[-]2010 - today @

2015

W [j10]

B [c84]

[)
B LR Joseph Lee, Jonathan Aldrich, Troy Shaw, Alex Potanin, Benjamin Chung;: « a rtl faCt

A Theory of Tagged Objects (Artifact). DARTS 1(1): 03:1-03-3 (2015)

8 @ o Joseph Lee, Jonathan Aldrich, Troy Shaw, Alex Potanin:

A Theory of Tagged Objects. ECOOP 2015: 174-197 « p a p e r

(c) Camil Demetrescu

Develop open source benchmarks

Codify documentation, methodologies &
reporting standards

Require executable artifacts

Publish reproduction studies

