

Scalability in Compiler Development
How to Get Testing and Optimization Done in a Reasonable Time

Jeremy Bennett

Machine Learning Compilers

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Do Compilers Affect Energy?

◾ Initial research in 2012 by
Embecosm and Bristol
University

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Do Compilers Affect Energy?

◾ Initial research in 2012 by
Embecosm and Bristol
University

◾ The answer is “yes”

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Do Compilers Affect Energy?

Identifying Compiler Options to Minimize Energy Consumption for Embedded Platforms
James Pallister; Simon J. Hollis; Jeremy Bennett
The Computer Journal 2013; doi: 10.1093/comjnl/bxt129
http://comjnl.oxfordjournals.org/cgi/reprint/bxt129?ijkey=aA4RYlYQLNVgkE3

◾ Initial research in 2012 by
Embecosm and Bristol
University

◾ The answer is “yes”
◾ Now published open access

in a peer-reviewed journal

http://comjnl.oxfordjournals.org/cgi/reprint/bxt129?ijkey=aA4RYlYQLNVgkE3&keytype=ref

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Research into
modeling energy usage

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Research into
modeling energy usage

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Research into
modeling energy usage

Energy
measurement

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Research into
modeling energy usage

Energy
measurement

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

MAGEEC: Machine Guided Energy
Efficient Compilation

Research into feedback
directed optimization

Research into
modeling energy usage

Energy
measurement

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler Compiler Plugin

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler Compiler Plugin

Feature
Extractor

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler Compiler Plugin

Feature
Extractor

Pass
Gate

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler Compiler Plugin MAGEEC
Machine Learner

Feature
Extractor

Pass
Gate

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Overall Design

Compiler Compiler Plugin MAGEEC
Machine Learner

MAGEECMAGEEC

Feature
Extractor

Pass
Gate

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELIST

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

Machine
Learning
once, after

all tests run

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

Machine
Learning
once, after

all tests run

MAGEEC built with
-DMAGEEC_FILEML

● Run many, many times
● How do we choose the passes to run?

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● From all combinations, we can find the impact of one option.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● From all combinations, we can find the impact of one option.
– example with three options, x

0
, x

1
 and x

2
.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● From all combinations, we can find the impact of one option.
– example with three options, x

0
, x

1
 and x

2
.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● The same data give us the other options as well

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● The same data give us the other options as well

● We need a total of 8 runs

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Full Factorial Design

● The same data give us the other options as well

● We need a total of 8 runs
– but what if we had 250 options?

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● From a subset, we can find the impact of one option.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● From a subset, we can find the impact of one option.
– same example with three options, x

0
, x

1
 and x

2
.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● From a subset, we can find the impact of one option.
– same example with three options, x

0
, x

1
 and x

2
.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● The same data give us all the options.
– by choosing a different combination of data points

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● The same data give us all the options.
– by choosing a different combination of data points

● We need a total of 4 runs

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Fractional Factorial Design

● The same data give us all the options.
– by choosing a different combination of data points

● We need a total of 4 runs
– but it could be x

0
 and x

1
 acting together

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction
– challenge is tools

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction
– challenge is tools
– current limit is 120 factors

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

Machine
Learning

MAGEEC built with
-DMAGEEC_FILEML

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

Machine
Learning

MAGEEC built with
-DMAGEEC_FILEML

FFD
Generator

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s
– = 50d 13h 37m 47s

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s
– = 50d 13h 37m 47s

● Oh dear

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s
– = 50d 13h 37m 47s

● Oh dear

One compiler on one CPU

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s
– = 50d 13h 37m 47s

● Oh dear

One compiler on one CPU
Atmel have 200+ AVR variants

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD
● One more run than the

number of factors (passes).

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD
● One more run than the

number of factors (passes).
● Assumes independence of

factors.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD
● One more run than the

number of factors (passes).
● Assumes independence of

factors.
● 210 optimization passes

means 211 test runs
– 23h 27m on one board.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD
● One more run than the

number of factors (passes).
● Assumes independence of

factors.
● 210 optimization passes

means 211 test runs
– 23h 27m on one board.

● Can then use FFD on most
important passes

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Placket Burman to the Rescue

● A special case of FFD
● One more run than the

number of factors (passes).
● Assumes independence of

factors.
● 210 optimization passes

means 211 test runs
– 23h 27m on one board.

● Can then use FFD on most
important passes

Superoptimization

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Context

Superoptimization is an old technique
– Henry Massalin. Superoptimizer—A look at the Smallest

Program. ASPLOS-II, 1987.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Context

Superoptimization is an old technique
– Henry Massalin. Superoptimizer—A look at the Smallest

Program. ASPLOS-II, 1987.
There are free and open source implementations
– A Hacker's Assistant (Aha)
– the GNU Superoptimizer (GSO)
– all have limitations

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Context

Superoptimization is an old technique
– Henry Massalin. Superoptimizer—A look at the Smallest

Program. ASPLOS-II, 1987.
There are free and open source implementations
– A Hacker's Assistant (Aha)
– the GNU Superoptimizer (GSO)
– all have limitations

Can we now build a commercially robust tool?
– computers are faster, algorithms have advanced
– what are the areas where this can be applied?

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Superoptimization in Action

int sign (int n)

{

if (n > 0)

return 1;

else if (n < 0)

return -1;

else

return 0;

}

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Superoptimization in Action

int sign (int n)

{

if (n > 0)

return 1;

else if (n < 0)

return -1;

else

return 0;

}

cmp.l d0, 0

ble L1

move.l d1, 1

bra L3

L1:

bge L2

move.l d1, -1

bra L3

L2:

move.l d1, 0

L3:

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Superoptimization in Action

int sign (int n)

{

if (n > 0)

return 1;

else if (n < 0)

return -1;

else

return 0;

}

cmp.l d0, 0

ble L1

move.l d1, 1

bra L3

L1:

bge L2

move.l d1, -1

bra L3

L2:

move.l d1, 0

L3:

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

0 0

x d0 d1

0 2

x d0 d1

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

1 -6

0 0

x d0 d1

0 0

0 2

x d0 d1

0 4

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

1 -6

0 -6 -1

0 0

x d0 d1

0 0

0 0 0

0 2

x d0 d1

0 4

0 4 0

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

1 -6

0 -6 -1

1 6 -1

0 0

x d0 d1

0 0

0 0 0

0 0 0

0 2

x d0 d1

0 4

0 4 0

1 -4 0

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

1 -6

0 -6 -1

1 6 -1

0 6 -1

0 0

x d0 d1

0 0

0 0 0

0 0 0

0 0 0

0 2

x d0 d1

0 4

0 4 0

1 -4 0

0 -4 1

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

d0 ← n

add.l d0, d0

subx.l d1, d1

negx.l d0

addx.l d1, d1

0 -3

x d0 d1

1 -6

0 -6 -1

1 6 -1

0 6 -1

-1

0 0

x d0 d1

0 0

0 0 0

0 0 0

0 0 0

0

0 2

x d0 d1

0 4

0 4 0

1 -4 0

0 -4 1

1

How Does it Work?

d1 → sign(n)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Generating the sequences of instructions

Superoptimization Fundamentals
Enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Generating the sequences of instructions
– But doing them all takes far too long

Superoptimization Fundamentals
Enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Generating the sequences of instructions
– But doing them all takes far too long

Short sequences

Optimal
result

Instruction set

Superoptimization Fundamentals
Enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Generating the sequences of instructions
– But doing them all takes far too long

Longer sequences

Possible suboptimal
result

Short sequences

Optimal
result

Instruction set

Superoptimization Fundamentals
Enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Generating the sequences of instructions
– But doing them all takes far too long

How to select the sequences of instructions?

Longer sequences

Possible suboptimal
result

Short sequences

Optimal
result

Instruction set

Superoptimization Fundamentals
Enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Superoptimization Fundamentals
Pruning

Instruction set

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

Instruction set

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Instruction set

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Instruction set

Register renaming
add r0,r1 = add r2,r3

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Instruction set

Redundant computation
move r0, r0

Register renaming
add r0,r1 = add r2,r3

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Instruction set

Redundant computation
move r0, r0

Commutativity
A + B = B + A

Register renaming
add r0,r1 = add r2,r3

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Unused results

Instruction set

Redundant computation
move r0, r0

Commutativity
A + B = B + A

Register renaming
add r0,r1 = add r2,r3

Superoptimization Fundamentals
Pruning

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?

Superoptimization Fundamentals
Testing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?
Testing

(simulation)

Superoptimization Fundamentals
Testing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?
Testing

(simulation)
Mathematical proof
(symbolic solving)

Superoptimization Fundamentals
Testing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?
Testing

(simulation)
Mathematical proof
(symbolic solving)

Superoptimization Fundamentals
Testing

1. Choose some input
2. Run/simulate
3. Check output

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?
Testing

(simulation)
Mathematical proof
(symbolic solving)

Superoptimization Fundamentals
Testing

Formal verification
Proves the sequence correct
Slow

1. Choose some input
2. Run/simulate
3. Check output

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Is the sequence correct?
Testing

(simulation)
Mathematical proof
(symbolic solving)

Superoptimization Fundamentals
Testing

Formal verification
Proves the sequence correct
Slow

1. Choose some input
2. Run/simulate
3. Check output

Use Both

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Which sequence is the best?

Superoptimization Fundamentals
Costing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Which sequence is the best?

Execution time

Superoptimization Fundamentals
Costing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Which sequence is the best?

Execution time Code size

Superoptimization Fundamentals
Costing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Which sequence is the best?

Execution time Code size Energy consumption

Superoptimization Fundamentals
Costing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Which sequence is the best?

If you can enumerate the instructions in cost order, the
first correct sequence is the optimal sequence.

Execution time Code size Energy consumption

Superoptimization Fundamentals
Costing

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Search Space Pruning

Restrict parameters

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Search Space Pruning

Restrict parameters

– Registers
● 50% of instruction sequences of length 8 use less than 4

registers
– Immediate constants

● Frequently used constants: -16 to +16, 2n, 2n-1

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Search Space Pruning

Restrict parameters

– Registers
● 50% of instruction sequences of length 8 use less than 4

registers
– Immediate constants

● Frequently used constants: -16 to +16, 2n, 2n-1

Remove meaningless constructs

– mov r0, r0

– add r0, r0, #0

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Search Space Pruning

Restrict parameters

– Registers
● 50% of instruction sequences of length 8 use less than 4

registers
– Immediate constants

● Frequently used constants: -16 to +16, 2n, 2n-1

Remove meaningless constructs

– mov r0, r0

– add r0, r0, #0

Canonical form

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form

mov r1, r0 has many equivalent versions

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Rename each register so they appear in sequence:

mov r1, r0

mov r4, r2 mov r1, r0

mov r2, r8

State of the Art
Canonical Form

mov r1, r0 has many equivalent versions

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

Rename each register so they appear in sequence:

mov r1, r0

mov r4, r2 mov r1, r0

mov r2, r8

With 16 registers this replaces 16*15 equivalent versions

State of the Art
Canonical Form

mov r1, r0 has many equivalent versions

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form

add r4, r8, r1
orr r8, r4, #1
sub r1, r2, #8

add r2, r1, r0
orr r1, r2, #1
sub r0, r3, #8

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form

add r4, r8, r1
orr r8, r4, #1
sub r1, r2, #8

add r2, r1, r0
orr r1, r2, #1
sub r0, r3, #8

add r0, r0, r0
add r0, r0, r1
add r0, r1, r0
add r0, r1, r1
add r0, r1, r2

Single three operand
instruction:

add rX, rX, rX

5 unique forms

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

@200,000 tests/second

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

@200,000 tests/second 2.9 million years

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

@200,000 tests/second 2.9 million years 16 days

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
 sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

@200,000 tests/second 2.9 million years 16 days <3 days

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Costing

Sequence cost is simple if code size is to be minimised

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Costing

Sequence cost is simple if code size is to be minimised

Difficult to accurately measure the performance of short
sequences of instructions.

– Pipeline modelling

– Cycle accurate simulation

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Costing

Sequence cost is simple if code size is to be minimised

Difficult to accurately measure the performance of short
sequences of instructions.

– Pipeline modelling

– Cycle accurate simulation

Energy

– Total Software Energy and Reporting (TSERO)

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Smaller instruction set fewer optimal sequences (?)→

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Smaller instruction set fewer optimal sequences (?)→

Large instruction set Many short sequences

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Smaller instruction set fewer optimal sequences (?)→

Large instruction set

Small instruction set

Many short sequences

Few longer sequences

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Smaller instruction set fewer optimal sequences (?)→

Large instruction set

Small instruction set

Many short sequences

Few longer sequences

Hard for standard
compilers

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Instruction Sets

Characteristics of the instruction set affect how well a
superoptimizer will perform.

Smaller instruction set fewer optimal sequences (?)→

Large instruction set

Small instruction set

Many short sequences

Few longer sequences

Hard for standard
compilers

Easier for standard
compilers

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable

Fingerprinter

Check for match

Enumerator

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable

Fingerprinter

Check for match

Match?
Boolean

Equivalence
Test

Yes Pass
Optimization

Database
Enumerator

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Your
Program

Harvester Canonicalizer Fingerprinter

Optimization
Database

Better sequence found
Replace

Input
sequence

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered

– E.g. OpenSSL Montgomery multiplication 60% faster

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered

– E.g. OpenSSL Montgomery multiplication 60% faster

Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. Architectural Support for
Programming Languages and Operating Systems, 305.

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Discovering New Algorithms

Space of all programsCorrect programs

Algorithmically
distinct programs

Superoptimized

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Discovering New Algorithms

Space of all programsCorrect programs

Algorithmically
distinct programs

Stochastic superoptimization's longer sequences make this more likely

Superoptimized

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

GSO 2.0: A Superoptimizer Toolkit

Machine state

Instructions

Slots

Parallelisation
Bruteforce

iterator

Canonical form
iterator

Constants
iterator

Stochastic
iterator

Instruction
sequence

testing

Instruction
equivalence

checking

Peephole
superoptimizer

testing

Thank You

www.embecosm.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

