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Do Compilers  Affect Energy?

Identifying Compiler Options to Minimize Energy Consumption for Embedded Platforms
James Pallister; Simon J. Hollis; Jeremy Bennett
The Computer Journal 2013; doi: 10.1093/comjnl/bxt129
http://comjnl.oxfordjournals.org/cgi/reprint/bxt129?ijkey=aA4RYlYQLNVgkE3

◾ Initial research in 2012 by 
Embecosm and Bristol 
University

◾ The answer is “yes”
◾ Now published open access 

in a peer-reviewed journal

http://comjnl.oxfordjournals.org/cgi/reprint/bxt129?ijkey=aA4RYlYQLNVgkE3&keytype=ref
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Building the Database

Test Harness

$MAGEEC_EXECUTELISTLog file

Machine
Learning
once, after

all tests run

MAGEEC built with
-DMAGEEC_FILEML

● Run many, many times
● How do we choose the passes to run?
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Full Factorial Design

● The same data give us the other options as well

● We need a total of 8 runs
– but what if we had 250 options?
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Fractional Factorial Design

● The same data give us all the options.
– by choosing a different combination of data points

● We need a total of 4 runs
– but it could be x

0
 and x

1
 acting together



Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors



Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction



Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction
– challenge is tools



Copyright © 2013 Embecosm. Freely available under a Creative Commons license

More Factors

● Gains are more significant with more factors
– deal with multiple factor interaction
– challenge is tools
– current limit is 120 factors
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Scalability

● Each AVR test takes 4s
– 2s to flash device
– 2s to run test

● Approx 100 BEEBS tests
– run 6 boards at once
– 67s per test run

● 200+ optimization passes
– 2^200 possibilities
– FFD reduces this
– to 2^16 = 65,536 runs
– = 4,369,067s
– = 50d 13h 37m 47s

● Oh dear

One compiler on one CPU
Atmel have 200+ AVR variants
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Superoptimization is an old technique
– Henry Massalin. Superoptimizer—A look at the Smallest 

Program. ASPLOS-II, 1987.
There are free and open source implementations
– A Hacker's Assistant (Aha)
– the GNU Superoptimizer (GSO)
– all have limitations

Can we now build a commercially robust tool?
– computers are  faster, algorithms have advanced
– what are the areas where this can be applied?
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return -1;

else

return 0;

}
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ble    L1
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Generating the sequences of instructions
– But doing them all takes far too long

How to select the sequences of instructions?

Longer sequences

Possible suboptimal 
result

Short sequences

Optimal 
result

Instruction set

Superoptimization Fundamentals
Enumeration
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Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Instruction set

Redundant computation
move r0, r0

Commutativity
A + B = B + A

Register renaming
add r0,r1 = add r2,r3
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Pruning
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Not all instruction sequences are valid.

How do we quickly ignore bad sequences?

Unused results

Instruction set

Redundant computation
move r0, r0

Commutativity
A + B = B + A

Register renaming
add r0,r1 = add r2,r3

Superoptimization Fundamentals
Pruning
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Is the sequence correct?
Testing

(simulation)
Mathematical proof
(symbolic solving)

Superoptimization Fundamentals
Testing

Formal verification
Proves the sequence correct
Slow

1.  Choose some input
2.  Run/simulate
3.  Check output

Use Both
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Which sequence is the best?

If you can enumerate the instructions in cost order, the 
first correct sequence is the optimal sequence.

Execution time Code size Energy consumption

Superoptimization Fundamentals
Costing
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Rename each register so they appear in sequence:

mov r1, r0

mov r4, r2                 mov r1, r0

mov r2, r8

State of the Art
Canonical Form

mov r1, r0 has many equivalent versions
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Rename each register so they appear in sequence:

mov r1, r0

mov r4, r2                 mov r1, r0

mov r2, r8

With 16 registers this replaces 16*15 equivalent versions

State of the Art
Canonical Form

mov r1, r0 has many equivalent versions
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State of the Art
Canonical Form

add r4, r8, r1
orr r8, r4, #1
sub r1, r2, #8

add r2, r1, r0
orr r1, r2, #1
sub r0, r3, #8
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State of the Art
Canonical Form

add r4, r8, r1
orr r8, r4, #1
sub r1, r2, #8

add r2, r1, r0
orr r1, r2, #1
sub r0, r3, #8

add r0, r0, r0
add r0, r0, r1
add r0, r1, r0
add r0, r1, r1
add r0, r1, r2

Single three operand 
instruction: 

add rX, rX, rX

5 unique forms
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    sub r3, r4, r5
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State of the Art
Canonical Form Reduction

Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
    sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200
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Data processing instructions

– 16 ops, each using 3 of 16 possible registers.
– E.g. add r0, r1, r2
    sub r3, r4, r5

Instructions Normal Canonical Canonical (4 registers)

1 65,536 80 80

2 4,294,967,296 51,968 47,872

3 281,474,976,710,656 4,157,669,376 45,264,896

4 18,446,744,073,709,551,616 276,142,292,992 45,880,115,200

@200,000 tests/second 2.9 million years 16 days <3 days
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State of the Art
Instruction Costing

Sequence cost is simple if code size is to be minimised

Difficult to accurately measure the performance of short 
sequences of instructions.

– Pipeline modelling

– Cycle accurate simulation

Energy

– Total Software Energy and Reporting (TSERO)
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Characteristics of the instruction set affect how well a 
superoptimizer will perform.

Smaller instruction set  fewer optimal sequences (?)→

Large instruction set

Small instruction set

Many short sequences

Few longer sequences

Hard for standard
compilers

Easier for standard
compilers



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable

Fingerprinter

Check for match

Enumerator



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Training
Programs

Harvester Canonicalizer Fingerprinter

Fingerprint
Hashtable

Fingerprinter

Check for match

Match?
Boolean

Equivalence
Test

Yes Pass
Optimization

Database
Enumerator



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Peephole Superoptimizers

Test case matcher

Your
Program

Harvester Canonicalizer Fingerprinter

Optimization
Database

Better sequence found
Replace 

Input
sequence



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered

– E.g. OpenSSL Montgomery multiplication 60% faster



  

Copyright © 2013 Embecosm. Freely available under a Creative Commons license

State of the Art
Stochastic Superoptimization

A different approach to instruction sequence enumeration

Longer sequences of instructions

– Sequences of >14 instructions were considered

– E.g. OpenSSL Montgomery multiplication 60% faster

Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. Architectural Support for 
Programming Languages and Operating Systems, 305. 
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State of the Art
Discovering New Algorithms

Space of all programsCorrect programs

Algorithmically
distinct programs

Stochastic superoptimization's longer sequences make this more likely

Superoptimized
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GSO 2.0: A Superoptimizer Toolkit

Machine state

Instructions

Slots

Parallelisation
Bruteforce 

iterator

Canonical form
iterator

Constants
iterator

Stochastic
iterator

Instruction 
sequence

testing

Instruction 
equivalence

checking

Peephole 
superoptimizer

testing
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