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Adaptive evolution in the stomach
lysozymes of foregut fermenters

Caro-Beth Stewart*t, James W. Schilling?
& Allan C. Wilson*

. Department of Biochemistry, University of California, Berkeley,
Califormia 94720, UISA

{ California Biotechnology, Inc., 2450 Bayshare Parkway,
Mountain View, California 94043, USA

The comergent evolution of a fermentative foregut in two groups
of mammals offers an opportunity to study adaptive evolution at
the protein level. The appearance of this mode of digestion has
been accompanied by the recruitment of lysozyme as a bacteriolytic
nzyme in the stomach both in the ruminants (for example the
cow) and later in the colobine moakeys (for example the langur).
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studies of proteins and nucleic acids appears 1o it the neutral
heory of molecular evolution; that is, they could have become
ixned by random drilt of selectively neutral or neurly neutral

nutations rather than by positive darwinian selection’, For this

)
B.r

Amino-acid sequence of langur stomach lysozyme

iromn the langur sequence are shown for t
lysorymes. This rapid evolution, cow An amino-acid deletion is indicated by a dash

and horse

SRNG5S

Stque
Equus

shown 1

caballus

M

g »
L2 : L
KW, KN -RISS

the simgle letter co

VHOZIYICs

f lysozyme ¢ sequences
nties iadscated by a det
human |( Homo sapiens), rat

»Wes shown are fromm baboon PO &) hun
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ARTICLE

dol:10.1038/nature11247

An integrated encyclopedia of DNA
elements in the human genome

I'he ENCODE Project Consortium®

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.
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ENCODE Consortium (2012) Nature 489:57-74
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Benchmarking to biologists

» Benchmarking as a comparative process

e i.e. “which software’s best?” / ‘which
platform’

* Benchmarking application logic /
profiling unknown

» Environments / runtimes generally either
assumed to be identical, or else loosely
categorised into ‘laptops vs clusters’




Case Study 1

aka

‘Which program’s the best?’




Bioinformatics environments are
very heterogeneous

* Laptop:
— Portable

— Very costly form-factor
— Maté? Beer?
* Raspi:
— Low: cost, energy (& power)
— Highly portable
— Hackable form-factor

-/
. '

Clusters:
Not portable, setup costs

The cloud:

— Power closely linked to budget (as limited
as)
— Almost infinitely scalable

-Have to have a connection to get data up
there (and down!)

— Fiddly setup




Benchmarking to biologists

RAxML performance on the Raspberry Pi
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Comparison

CPU type,
clock GHz
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RAM Gb /
MHz /

type
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Reviewing / comparing new methods

* Biological problems R 1k
often scale horribly
unpredictably

Algorithm analyses

So empirical
measurements on
different problem
sets to predict how
problems will
scale...




Workflow

Short reads ~—l

¥

Concatenate hits to
CEGMA alignments

v

Muscle
3.8.31

v

Set up workflow, binaries, and reference /
alignment data.
Deploy to machines.

Protein-protein blast reads (from MG-
RAST repository, Bass Strait oil field)
against 458 core eukaryote genes from
CEGMA. Keep only top hits. Use max.
num_threads available.

Append top hit sequences to CEGMA
alignments.

For each:

Align in MUSCLE using default
parameters

Infer de novo phylogeny in RAXML
under Dayhoff, random starting tree
and max. PTHREADS.

Output and parse times.




Results - BLASTP
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Results - RAXML

RAXxML, wall clock time, | )
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Case Study 2

aka

‘What the hell’s a random seed?’




Mean-variance plot for sitewise InL estimates in PAML
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Properly benchmarking workflows

* Ignoring limiting-steps analyses
— in many workflows might actually be data
cleaning / parsing / transformation

* Or (most common error) inefficiently
iterating

e Oreven disk I/O!




Workflow benchmarking very rare

* Many bioinformatics workflows /
pipelines limiting at odd steps, parsing etc

* Many e.g. bioinformatics papers
* More harm than good?




Conclusion

Biologists and error
Current practice
Help!

Interesting challenges
too...
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