Evaluating Performance using
Ratio of Execution Times

Tomas Kalibera

My Background

 PL/Systems
- R language: GNU R, (Purdue) FastR
- Java: Ovm, OpenJDK
- Garbage collection, interpretation, analysis

* Performance/Benchmarking
- Methodology: modeling non-determinism
- DaCapo benchmarks: observational study

- Practice: DaCapo, SPEC CPU/JBB/JVM, Shootout, CD,
CSIBE, FFT&kernels — Mono, Java, R

- Teaching; Evaluate, Dagstuhl workshops

Talking about Performance

(fictional conversations in PL/systems)

Lunch at SW company

Joe: Any numbers yet for your compiler patch?

Ann: 9% on average, no big slowdowns.

Joe: That's really good!

Ann: Yes:) Or too good to be true, have to run more tests.

Coffee at CS dept of a uni

Cristine: How much slower is our VM than production VM X?
John: Now within 2x.
Cristine: Perfect, that allows us to claim our speedups are relevant.

Dissertation (MSc) committee meeting, the student got 18% speedup on FFT with
kernel patch and claimed he could speed up applications by 18%

Erik: 18% speedup is far too small. We should reject.
Tim: 18% is great even for just FFT, great work. The generalizing claim is naive.

Evaluating Time Ratio In Papers

ASPLOS
ISMM
PLDI

ASPLOS
ISMM
PLDI

Total

Papers

32
13
55

48
12
58
218

2011

2015

Reported Time Ratio

22

27

37
10
22
127 (58%)

Important Decisions In Evaluations
iInvolving Time Ratio

* Which ratio?
- Opinions, ratio games and confusion
* Averaging
- Which mean, averaging over benchmarks

 Error estimate
- Hardly ever any at all

Warning: some options given in the following are questionable and some
are outright wrong!

Time Ratio: But Which One?

GNU-R, byte-code interpreter (B): 585 T,

Purdue FastR (F):

16S Tnew

(spectralnorm-alt4 [sn5] benchmark)

T

new

Told

T

1 _ new

Told

H

old

new

lﬂ

old
—1

new

Told

Log—T

new

0.28 (28%) Ratio of execution times

0.72 (72%) Percentage improvement in
execution time

3.63 (363%, 3.63X) Speedup
2.63 (263%) f‘Percent,z:\ge improvement
In speed

1.38 (138%)

SALE 250%

Time Ratio: The Right Baseline?

GNU-R, byte-code compiler (B): 58s Ty

Purdue FastR (F): 16s T:
GNU-R, AST interpreter (A): 154s T,

TF

T 028 We reduced execution time to 28% of

B best performing alternative. We are

T, 3.63x faster.

—=3.63

TF
E:o.m 5:0 33 We reduced execution time of an existing system
T, T, to 10%. The best performing alternative reduced
T, T, it to 38%. We are 9.63x faster but the alternative
T—:9.63 T—:2.66 only 2.66x faster.

T
o)

Summarizing over Benchmarks

Language Shootout Benchmark Suite for R: n = 37 benchmarks.

Execution times with FastR: T
Execution times with GNU-RAST: 7

Al

—Z 3 —12 91 Arithmetic mean of ratios

' —7.00 Ratio of sums

rdH” fAi_gi3 Geometric mean of ratios

=5.02 Harmonic mean of ratios

Summarizing T,

ratio

TF

What is Hiding Behind the Mean?

,(/ H" h:B.SS Geometric mean of ratios

66x speedup!

60

40

Execution Time [s]

Repetition and Error Estimate

26

22
I

Iteration times for sn5 (FastR)

18
I

I I I I I
2 4 6 8 10

lteration Index
Percentile bootstrap 95% confidence interval for the mean

cfsingle <- function (x) {
means <- sapply(1:10000,
function (i) mean (sample(x, replace = TRUE)))
sort (means) [¢ (250, 9750)]
}

Sn5 with FastR takes 16.6 £ 2.0s with 95% confidence.

Repetition and Error Estimate

Percentile bootstrap 95% confidence interval for the ratio of means.
Input:

X — vector of iteration times for nominator

Y - vector of iteration times for denominator

cfratio <- function(x, vy) {
means <- sapply(1:10000, function (i) {
Xs <- sample(x, replace = TRUE)
vs <- sample(y, replace = TRUE)
mean (xs) / mean (ys)
})
sort (means) [c (250, 9750)]

}

The speedup of FastR over GNU-R AST on sn5is 9.4 + 1.1x.

FastR reduces execution time of sn5 over GNU-R AST to 10.8 + 1.3%.

Relative Execution Time (GNUR-AST = 1)

1.0

o

0.7

o

0.5

o

0.2

(¢

0.0

o

bt1

bt2
bt3
pri

pr2

fal

fa2

fa3

Relative Time of FastR and GNUR-BC over GNUR-AST

fad

fab

fr1

fre
kn1

kn2
kn3

. FastR .GNUR-BC

anlmeN mulumh«ﬂ‘

kn4
mat

ma2

ma3

ma4

nb1
nb2
nb3
nb4
nb5
pd1

rai

rci

rc2

rc3

sni

sn2

sn3

sn4

snb5
sSn6
sn7

Repetition and Error Estimate

Percentile bootstrap 95% confidence interval for the geometric mean..
Input:
Xr — vector of ratios (one for each benchmark, calculated as ratio of
iteration means))

cfgmean <- function (xr) {
gmean <- function (x) exp (mean(log(x)))

gmeans <- sapply(1:10000, function (i)
gmean (sample (xr, replace = TRUE)))

sort (gmeans) [c (250, 9750)]
}

The geomean speedup of FastR over GNU-R AST is 8.9 + 2.7x.

On geomean, FastR reduces execution time over GNU-R AST to 12.4 * 3.8%.

Summary

* Decisions for R study
Tnew
- Ratio for graphs T .
- Ratio in text given as inverse Tli

- 95% bootstrap confidence intervals for ratios of
iIndividual benchmarks

- Geometric mean over suite in text with huge disclaimer

e References

- ISMM'13, Rigorous benchmarking in reasonable time
- OOPSLA'12, A black-box approach to understanding concurrency in DaCapo
- VEE'15, A Fast Abstract Syntax Tree Interpreter for R

- Uni of Kent technical report, https://kar.kent.ac.uk/30809,
Quantifying Performance Changes with Effect Size Confidence Intervals

Additional Resources

Jain: The Art of Computer Systems Performance Analysis
Lilja: Measuring Computer Performance: A Practitioner's Guide

Kirkup: Experimental Methods: An Introduction to the Analysis and Presentation
of Data

NIST/SEMATECH: Engineering Statistics Handbook,
http://www.itl.nist.gov/div898/handbook/

Wassermann: All of Statistics: A Concise Course in Statistical Inference

Evaluate Collaboratory: Experimental Evaluation of Software and Systems in
Computer Science, http://evaluate.inf.usi.ch/

http://www.itl.nist.gov/div898/handbook/

