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My Background

 PL/Systems
- R language: GNU R, (Purdue) FastR
- Java: Ovm, OpenJDK
- Garbage collection, interpretation, analysis

* Performance/Benchmarking
- Methodology: modeling non-determinism
- DaCapo benchmarks: observational study

- Practice: DaCapo, SPEC CPU/JBB/JVM, Shootout, CD,
CSIBE, FFT&kernels — Mono, Java, R

- Teaching; Evaluate, Dagstuhl workshops



Talking about Performance

(fictional conversations in PL/systems)

Lunch at SW company

Joe: Any numbers yet for your compiler patch?

Ann: 9% on average, no big slowdowns.

Joe: That's really good!

Ann: Yes:) Or too good to be true, have to run more tests.

Coffee at CS dept of a uni

Cristine: How much slower is our VM than production VM X?
John:  Now within 2x.
Cristine: Perfect, that allows us to claim our speedups are relevant.

Dissertation (MSc) committee meeting, the student got 18% speedup on FFT with
kernel patch and claimed he could speed up applications by 18%

Erik: 18% speedup is far too small. We should reject.
Tim: 18% is great even for just FFT, great work. The generalizing claim is naive.



Evaluating Time Ratio In Papers
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Important Decisions In Evaluations
iInvolving Time Ratio

* Which ratio?
- Opinions, ratio games and confusion
* Averaging
- Which mean, averaging over benchmarks

 Error estimate
- Hardly ever any at all

Warning: some options given in the following are questionable and some
are outright wrong!



Time Ratio: But Which One?
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Time Ratio: The Right Baseline?

GNU-R, byte-code compiler (B): 58s Ty

Purdue FastR (F): 16s T:
GNU-R, AST interpreter (A): 154s T,

TF

T 028 We reduced execution time to 28% of

B best performing alternative. We are

T, 3.63x faster.
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E:o.m 5:0 33 We reduced execution time of an existing system
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T, T, it to 38%. We are 9.63x faster but the alternative
T—:9.63 T—:2.66 only 2.66x faster.
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Summarizing over Benchmarks

Language Shootout Benchmark Suite for R: n = 37 benchmarks.

Execution times with FastR: T
Execution times with GNU-RAST: 7
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=5.02 Harmonic mean of ratios
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What is Hiding Behind the Mean?

,(/ H" h:B.SS Geometric mean of ratios

66x speedup!
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Execution Time [s]

Repetition and Error Estimate
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lteration Index
Percentile bootstrap 95% confidence interval for the mean

cfsingle <- function (x) {
means <- sapply(1:10000,
function (i) mean (sample(x, replace = TRUE)) )
sort (means) [¢ (250, 9750)]
}

Sn5 with FastR takes 16.6 £ 2.0s with 95% confidence.



Repetition and Error Estimate

Percentile bootstrap 95% confidence interval for the ratio of means.
Input:

X — vector of iteration times for nominator

Y - vector of iteration times for denominator

cfratio <- function(x, vy) {
means <- sapply(1:10000, function (i) {
Xs <- sample(x, replace = TRUE)
vs <- sample(y, replace = TRUE)
mean (xs) / mean (ys)
})
sort (means) [c (250, 9750)]

}

The speedup of FastR over GNU-R AST on sn5is 9.4 + 1.1x.

FastR reduces execution time of sn5 over GNU-R AST to 10.8 + 1.3%.



Relative Execution Time (GNUR-AST = 1)
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Repetition and Error Estimate

Percentile bootstrap 95% confidence interval for the geometric mean..
Input:
Xr — vector of ratios (one for each benchmark, calculated as ratio of
iteration means))

cfgmean <- function (xr) {
gmean <- function (x) exp (mean(log(x)))

gmeans <- sapply(1:10000, function (i)
gmean (sample (xr, replace = TRUE)) )

sort (gmeans) [c (250, 9750) ]
}

The geomean speedup of FastR over GNU-R AST is 8.9 + 2.7x.

On geomean, FastR reduces execution time over GNU-R AST to 12.4 * 3.8%.



Summary

* Decisions for R study
Tnew
- Ratio for graphs T .
- Ratio in text given as inverse Tli

- 95% bootstrap confidence intervals for ratios of
iIndividual benchmarks

- Geometric mean over suite in text with huge disclaimer

e References

- ISMM'13, Rigorous benchmarking in reasonable time
- OOPSLA'12, A black-box approach to understanding concurrency in DaCapo
- VEE'15, A Fast Abstract Syntax Tree Interpreter for R

- Uni of Kent technical report, https://kar.kent.ac.uk/30809,
Quantifying Performance Changes with Effect Size Confidence Intervals



Additional Resources

Jain: The Art of Computer Systems Performance Analysis
Lilja: Measuring Computer Performance: A Practitioner's Guide

Kirkup: Experimental Methods: An Introduction to the Analysis and Presentation
of Data

NIST/SEMATECH: Engineering Statistics Handbook,
http://www.itl.nist.gov/div898/handbook/

Wassermann: All of Statistics: A Concise Course in Statistical Inference

Evaluate Collaboratory: Experimental Evaluation of Software and Systems in
Computer Science, http://evaluate.inf.usi.ch/
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