

Evaluating Performance using
Ratio of Execution Times

Tomas Kalibera

My Background

● PL/Systems
– R language: GNU R, (Purdue) FastR

– Java: Ovm, OpenJDK

– Garbage collection, interpretation, analysis

● Performance/Benchmarking
– Methodology: modeling non-determinism

– DaCapo benchmarks: observational study

– Practice: DaCapo, SPEC CPU/JBB/JVM, Shootout, CD,
CSIBE, FFT&kernels – Mono, Java, R

– Teaching; Evaluate, Dagstuhl workshops

Talking about Performance
(fictional conversations in PL/systems)

Lunch at SW company

Joe: Any numbers yet for your compiler patch?
Ann: 9% on average, no big slowdowns.
Joe: That's really good!
Ann: Yes:) Or too good to be true, have to run more tests.

Coffee at CS dept of a uni

Cristine: How much slower is our VM than production VM X?
John: Now within 2x.
Cristine: Perfect, that allows us to claim our speedups are relevant.

Dissertation (MSc) committee meeting, the student got 18% speedup on FFT with
kernel patch and claimed he could speed up applications by 18%

Erik: 18% speedup is far too small. We should reject.
Tim: 18% is great even for just FFT, great work. The generalizing claim is naïve.

Evaluating Time Ratio In Papers

Papers Reported Time Ratio

2011

ASPLOS 32 22

ISMM 13 9

PLDI 55 27

2015

ASPLOS 48 37

ISMM 12 10

PLDI 58 22

Total 218 127 (58%)

Important Decisions in Evaluations
involving Time Ratio

● Which ratio?
– Opinions, ratio games and confusion

● Averaging
– Which mean, averaging over benchmarks

● Error estimate
– Hardly ever any at all

Warning: some options given in the following are questionable and some
are outright wrong!

Time Ratio: But Which One?
GNU-R, byte-code interpreter (B): 58s
Purdue FastR (F): 16s

(spectralnorm-alt4 [sn5] benchmark)

1−
T new

T old

0.72 (72%)

T old

T new

2.63 (263%)

T old

T old−T new

T old

T new

−1

Percentage improvement in
execution time

“Percentage improvement
in speed”

T new

T old

T new

T old

0.28 (28%) Ratio of execution times

3.63 (363%, 3.63x) Speedup

1.38 (138%) SALE 250%

Time Ratio: The Right Baseline?
GNU-R, byte-code compiler (B): 58s
Purdue FastR (F): 16s
GNU-R, AST interpreter (A): 154s

T F

T A

=0.10 We reduced execution time of an existing system
to 10%. The best performing alternative reduced
it to 38%. We are 9.63x faster but the alternative
only 2.66x faster.

T F

T B

T F

T B

=0.28 We reduced execution time to 28% of
best performing alternative. We are
3.63x faster.

T A

T B

T A

=0.38

T B

T F

=3.63

T A

T F

=9.63
T A

T B

=2.66

Summarizing over Benchmarks
Language Shootout Benchmark Suite for R: n = 37 benchmarks.
Execution times with FastR:
Execution times with GNU-R AST:

1
n
∑i=1

n T Ai

T Fi

=12.91 Arithmetic mean of ratios

T Fi

T Ai

T A

T F

Summarizing
ratio

∑i=1

n
T Ai

∑i=1

n
T Fi

=7.00 Ratio of sums

n√∏i=1

n T Ai

T Fi

=8.53 Geometric mean of ratios

n

∑i=1

n T Fi

T Ai

=5.02 Harmonic mean of ratios

n√∏i=1

n T Ai

T Fi

=8.53 Geometric mean of ratios

66x speedup!

What is Hiding Behind the Mean?

Repetition and Error Estimate

Iteration times for sn5 (FastR)

cfsingle <­ function(x) {
 means <­ sapply(1:10000,

function(i) mean(sample(x, replace = TRUE)))
 sort(means)[c(250, 9750)]
}

Percentile bootstrap 95% confidence interval for the mean

Sn5 with FastR takes 16.6 ± 2.0s with 95% confidence.

Repetition and Error Estimate

cfratio <­ function(x, y) {
 means <­ sapply(1:10000, function(i) {
 xs <­ sample(x, replace = TRUE)
 ys <­ sample(y, replace = TRUE)
 mean(xs) / mean(ys)
 })
 sort(means)[c(250, 9750)]
}

Percentile bootstrap 95% confidence interval for the ratio of means.
Input:

x – vector of iteration times for nominator
Y – vector of iteration times for denominator

The speedup of FastR over GNU-R AST on sn5 is 9.4 ± 1.1x.

FastR reduces execution time of sn5 over GNU-R AST to 10.8 ± 1.3%.

Repetition and Error Estimate

cfgmean <­ function(xr) {

 gmean <­ function(x) exp(mean(log(x)))

 gmeans <­ sapply(1:10000, function(i)
 gmean(sample(xr, replace = TRUE)))

 sort(gmeans)[c(250, 9750)]
}

Percentile bootstrap 95% confidence interval for the geometric mean..
Input:

xr – vector of ratios (one for each benchmark, calculated as ratio of
iteration means))

The geomean speedup of FastR over GNU-R AST is 8.9 ± 2.7x.

On geomean, FastR reduces execution time over GNU-R AST to 12.4 ± 3.8%.

Summary
● Decisions for R study

– Ratio for graphs

– Ratio in text given as inverse

– 95% bootstrap confidence intervals for ratios of
individual benchmarks

– Geometric mean over suite in text with huge disclaimer

● References
– ISMM'13, Rigorous benchmarking in reasonable time

– OOPSLA'12, A black-box approach to understanding concurrency in DaCapo

– VEE'15, A Fast Abstract Syntax Tree Interpreter for R

– Uni of Kent technical report, https://kar.kent.ac.uk/30809,
Quantifying Performance Changes with Effect Size Confidence Intervals

T new

T old T old

T new

Additional Resources

Jain: The Art of Computer Systems Performance Analysis

Lilja: Measuring Computer Performance: A Practitioner's Guide

Kirkup: Experimental Methods: An Introduction to the Analysis and Presentation
of Data

NIST/SEMATECH: Engineering Statistics Handbook,
http://www.itl.nist.gov/div898/handbook/

Wassermann: All of Statistics: A Concise Course in Statistical Inference

Evaluate Collaboratory: Experimental Evaluation of Software and Systems in
Computer Science, http://evaluate.inf.usi.ch/

http://www.itl.nist.gov/div898/handbook/

