Capabilities and Information
Flow

Leakage of secrets

Heartbleed bug

N
OpenSSL library

T

Buffer overflow
(unprotected memory)

int leaking_secrets(int var){ o,
() ® 1
Leakage of secrets if(var > magic_number}{ 5
leak_info=2; s
else 1f(var < protected_var){ rvpertest
leak_info=1: Vary o mputs
protected_var > High } out
m— else :
‘ | leak_info=0;: T
. 2
return leak_info; } .

Both poor memory handling
and poor information flow control
can cause leaks of confidential information

\‘ + software —p

LBAC: - property holds
Lattice

DEFINITION 1 (NONINTERFERENCE PROPERTY). A program P sat- _
Based . , : : L input-output
ACCeSS isfies the noninterference property for the High-Low security policy if semantics
Control for every pair of initial states s1, s2, s1 =1, S2 = P(s1) =1 P(s2).

Low labelled data containers have the same values

General: lower level users must be unaware of the activities
of higher level users — [Goguen and Meseguer, 1982]

/0 semantics based noninterference is a hyper property of program executions (in fact a 2-hyper property)

A hyper property is a property that can only be expressed as sets of sets of executions

Properties Hyper properties
Execution speed bounds Noninterference
Traverse loops Nondeducibility on strategies

Update a given variable

Set of executions slower than bound Set of low equivalent input pairs that produce
Set of executions that traverse a loop low equivalent output pairs
etc. Set of low equivalent input strategies that

produce low equivalent output sequences

Suppose we discover a leak (using a hypertest)
How bad is the leak?

How do we quantify it?

Turns out that exactness is expensive (many many executions) to compute (#P - effectively NP)
Yasuoka and Tarauchi 2010

But the theory is simple
and

Estimates can be useful

Uncertainty and information

iInformation should be additive

information in an event should measure “reduction In
uncertainty’ when the event occurs

low probability = high reduction in uncertainty

highest when every possible event i1s equally likely

@ uncertainty reduction when an event a € A occurs i1s log p(la)

0 p(la): low probability = high reduction in uncertainty

o log>: information should be additive
o 2: base 2 produces information “bits”

@ get weighted average over all events: sum uncertainty
reduction for each event weighted by the probability of each
event

Entropy of a set of events

More formal

A random variable (or discrete random element in this case) is
a total function X : D — R. D and R are finite sets, D has a
probability distribution.

joint random variable: (X, Y') defined as (X, Y)

Entropy of a random variable X:

1
p(x)

H(X) =) p(x)log

xER

Associate random variables with expressions , particularly
program variables, at program points within a program.

Of interest are observations of values of variables at ¢ (the
entry point) and the special node w (the exit point).

Conditional entropy

o P((X (Y =y))=x)=P(X =x|Y =y), where

_ gy —) = P Y)
PX=xY =) p(y)

HXIY) =D py)H(X T (Y =y))

@ A key property of conditional information is that
H(X|Y) < H(X), with equality iff X and Y are independent.

Mutual Information

@ Given two random variables X and Y, the mutual information
between X and Y, written Z(X; Y) or M(X;Y) is defined as
follows:

p(x)p(y)

I(X;Y) =) _ > p(x,y)log ik

@ routine manipulation of sums and logs yields:
Z(X;Y)=H(X)+H(Y)—H(X,Y)

This quantity Is a direct measure of the amount of
information carried by X which can be learned by observing Y
(or vice versa).

I1(»;8) » (B8IA)

T(A;8) = H(A) - X(AIB) = X (B)- Y (BlA)
= H(M)+ X(B)-X(A,B)

CHAW RULE ¢ X (AR) = X(A) + H(BIA) = X(R)+ X (AlB)

@ As with entropy one can define conditional mutual
information. The mutual information between X and Y given

knowledge of Z, written Z(X; Y|Z), may be defined
Z(X;Y|Z) =H(X|Z)+H(Y|Z) —H(X,Y|Z)

@ This expression is used in the most general definition of
leakage.

eakage

The amount of leakage of confidential information into variable X
due to execution of the program:

L(X) = H(X“|L")

Alternatively: information shared between final value of X and and
the initial value of H, given that the initial value of L was already
known:

L'(X)=TI(H"; X“|L")

Why care about measuring leakage when bounding it or measuring it exactly is complexity?

Because

And
because leakage = 0 iff policy + program satisfies noninterference

N

And [Clark et alia 2007]

HyperGl: Automated Detection and Repair of Information Flow Leakage,
Ibranim Mesecan, Daniel Blackwell, David Clark, Myra B Cohen, Justyna Petke
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Keeping Secrets: Multi-objective Genetic Improvement for Detecting and Reducing Information Leakage
Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B Cohen, Justyna Petke
2022 37th IEEE/ACM International Conference on Automated Software Engineering (ASE)

HyperGl (leakage)

(a) Security

Policy

[

~

ke

e

(b) Generate HyperTests

| Leak |
| Detection |

s

-

— X

Origina
Program

~

/

N

~

o

AN

Tests

i (c) Generate Functional |

Automated Test
Generation

Algorithms

(o N

@d) Genetic

Improvement

Single |
Objective |
I Algorithms

L____

Multi- |

-’T“ Objective |
I Algorithms

N/

-

~

Improved
Program(s)

AN

K

Security Policy

Subject Ref LoC CVE-# High input Low input Low Output
Triangle 32 14 - secret side2 & side3 function return value
Atalk 23] 33 CVE-2009-3002 internal memory sock & peer function return value & uaddr
Underflow 23 18 CVE-2007-2875 h ppos function return value
Classity authors 18 - High Low function return value
Heartbleed [41] 1,082 CVE-2014-0160 internal memory payload_sent & payload_length payload_received
Bignum [42] 778 - internal memory s, len & ret s & function return value
can find of leaks manifested in these programs
Hypertests —

away from the causes of the leaks

Memory errors (e.g. Heartbleed, Bignum)
Information control flow errors (e.g. Triangle, Classify)

Currently:
Collecting CVE entries: to create a test bench that illustrates different leak causes
Developing hypertesting for fuzzers

Testing — control of all inputs
VS
Experimentation — partial control of inputs

Test set considerations

(A) (B)
Intended program: Actual program:
X = (X +2) % 4; X=3%X;
X=X % 4; 100% path coverage

/

Random input: x==3->(A):x==1, (B) x==1
Symbolic execution: x == -1999 -> (A): x == -1, (B) x == -1

High information test sets

Sampling from uniform distributions, maximally dissimilar tests

Near uniform : L2 test for discrete types, Kolmogorov-Smirnov for continuous types
— Uniform distributions have maximum entropy for a given distribution support

Dissimilarity: Normalised Information Distance for strings
— based on algorithmic information

Diversifying focused testing for unit testing Output Sampling for Output Diversity in Automatic Unit Test Generation
HD Menéndez, G Jahangirova, F Sarro, P Tonella, D Clark H Menéndez, M Boreale, D Gorla, D Clark

ACM Transactions on Software Engineering and Methodology, 2021 IEEE Transactions on Software Engineering, 2020
Test set diameter: Quantifying the diversity of sets of test cases Augmenting test suites effectiveness by increasing output diversity

R Feldt, S Poulding, D Clark, S Yoo N Alshahwan, M Harman

2016 |IEEE international conference on software testing, verification and validation 2012 34th International Conference on Software Engineering (ICSE)

https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:F1b5ZUV5XREC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:gKiMpY-AVTkC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:LjlpjdlvIbIC
https://scholar.google.lu/citations?view_op=view_citation&hl=en&user=TG8-wssAAAAJ&sortby=pubdate&citation_for_view=TG8-wssAAAAJ:qjMakFHDy7sC

Optimising Channel Capacity

Not possible to achieve in a testing scenario (usually)

But can optimise output diversity
| | Z(/; 0) o
o)

|| Z(H L)
/ oy \ \ |_|7-[(Lw)

Capacity of the leakage channel

Channel capacity

Worst case scenario for
Deterministic code

Max possible value of H(A)

Channel capacity does not have a general, closed form expression
As a black box method it provides diversity with semantic content

Search algorithms may be employed to partially reverse the program semantics
(Currently under investigation)

Search for test set with max output diversity

Testing against decentralised policies

HyperGl and recent work on side channel leakage use (monolithic) policies
e.g. LBAC

An alternative, and closer to the spirit of CHERI (possibly)
Is the Myers/Liskov (DLM)

Provides security guarantees to

Uses that describe the allowed flow of information in the program
Allows users to their own data
Jif: Java information flow A decentralized model for information flow control
AC Myers, L Zheng, S Zdancewic, S Chong, N Nystrom AC Myers, B Liskov

Software release. Located at http://www.cs.cornell.edul/jif 2001 ACM Symposium on Operating Systems Principles (SOSP) 1997

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ovlpa_IAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=ovlpa_IAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ovlpa_IAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=ovlpa_IAAAAJ:Tyk-4Ss8FVUC
http://www.cs.cornell.edu/jif

patient

data

{R: p,R}

researchers
R

Y

results of
study

{

patient
data E

patient p’s
medical

extractor

{R: RS}
statistics
package
[R: RS S

history

{p: p.H}

statistical
database

{S: S}

Labels

DLM achieves IFC through enforcement
Chief instrument is an ordering on labels

Definition of L1 C Ls:

I

owners(L;)
readers(Ly, O)

owners(L;)
VO € owners(L1), readers(Ly, O)

U

Can extend labels to

Labels for derived values

When a program with different labels

Definition of L U L>:

owners(L;, U Ly) owners(Ly) U owners(L;)

VO € owners(L1 L] Lg).

readers(L, U Ly, O) readers(L1, O) N readers(Ly, O)

Data in a program is input/output via user labeled

Data containers are called

Values can only be written to a slot If the resulting label is a

1.e. label on data than label on slot
Can create LBAC from the user labels
{01:02}

N el N

{O:r1} {0:r2} {O1:r; 02} {01; 02:1}

N7 N7

{O:r1,r2} {O1:r: O2:r}

\ N

t) {O1:r} {02:r}

\{}/

Some questions

Does CHERI need IFC?

Can DLM provide a basis for a formal method for reasoning about correct IFC in a CHERI context?

