
Capabilities and Information
Flow

Heartbleed bug
in

OpenSSL library

Buffer overflow
(unprotected memory)

Leakage of secrets

1
1
1

0

2
1
1

1

but

1
2
1

2
2
1

2

2

Security policy

Both poor memory handling
and poor information flow control

can cause leaks of confidential information

Security policy + software Noninterference property holds

Low labelled data containers have the same values

Software requirements

LBAC:
Lattice
Based
Access
Control

input-output
semantics

General: lower level users must be unaware of the activities

of higher level users — [Goguen and Meseguer, 1982]

I/O semantics based noninterference is a hyper property of program executions (in fact a 2-hyper property)

A hyper property is a property that can only be expressed as sets of sets of executions

Properties
Execution speed bounds

Traverse loops
Update a given variable

Hyper properties
Noninterference

Nondeducibility on strategies

Set of executions slower than bound
Set of executions that traverse a loop

etc.

Set of low equivalent input pairs that produce
low equivalent output pairs

Set of low equivalent input strategies that
produce low equivalent output sequences

Hypertest for the noninterference property is a low equivalent input pair

Suppose we discover a leak (using a hypertest)

How bad is the leak?

How do we quantify it?

Turns out that exactness is expensive (many many executions) to compute (#P - effectively NP)
Yasuoka and Tarauchi 2010

But the theory is simple

and

Estimates can be useful

Uncertainty and information

More formal

Conditional entropy

Mutual Information

Leakage

Why care about measuring leakage when bounding it or measuring it exactly is #P complexity?

Because

testing
And

because leakage = 0 iff policy + program satisfies noninterference

[Clark et alia 2007]And

HyperGI

HyperGI: Automated Detection and Repair of Information Flow Leakage,
Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B Cohen, Justyna Petke
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Keeping Secrets: Multi-objective Genetic Improvement for Detecting and Reducing Information Leakage
Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B Cohen, Justyna Petke
2022 37th IEEE/ACM International Conference on Automated Software Engineering (ASE)

HyperGI (leakage)

can find both types of leaks manifested in these programs
 abstract away from the causes of the leaks

Memory errors (e.g. Heartbleed, Bignum)
Information control flow errors (e.g. Triangle, Classify)

Currently:
Collecting CVE entries: to create a test bench that illustrates different leak causes

Developing hypertesting for fuzzers

Hypertests —

Testing — control of all inputs
vs

Experimentation — partial control of inputs

Test set considerations
Syntax coverage criteria inadequate

(A)
Intended program:

x = (x + 2) % 4;

(B)
Actual program:

x = 3 * x;
x = x % 4;

Test inputs, however generated, may suffer from coincidental correctness

100% path coverage

Random input: x == 3 -> (A): x == 1, (B) x == 1
Symbolic execution: x == -1999 -> (A): x == -1, (B) x == -1

High information test sets

Near uniform : L2 test for discrete types, Kolmogorov-Smirnov for continuous types
— Uniform distributions have maximum entropy for a given distribution support

Sampling from uniform distributions, maximally dissimilar tests

Dissimilarity: Normalised Information Distance for strings
— based on algorithmic information

Diversifying focused testing for unit testing
HD Menéndez, G Jahangirova, F Sarro, P Tonella, D Clark
ACM Transactions on Software Engineering and Methodology, 2021

Output Sampling for Output Diversity in Automatic Unit Test Generation
H Menéndez, M Boreale, D Gorla, D Clark
IEEE Transactions on Software Engineering, 2020

Test set diameter: Quantifying the diversity of sets of test cases
R Feldt, S Poulding, D Clark, S Yoo
2016 IEEE international conference on software testing, verification and validation

Augmenting test suites effectiveness by increasing output diversity
N Alshahwan, M Harman
2012 34th International Conference on Software Engineering (ICSE)

https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:F1b5ZUV5XREC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:gKiMpY-AVTkC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=Yr7RX3MAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=Yr7RX3MAAAAJ:LjlpjdlvIbIC
https://scholar.google.lu/citations?view_op=view_citation&hl=en&user=TG8-wssAAAAJ&sortby=pubdate&citation_for_view=TG8-wssAAAAJ:qjMakFHDy7sC

Optimising Channel Capacity
Not possible to achieve in a testing scenario (usually)

But can optimise output diversity

Channel capacity
Capacity of the leakage channel

Worst case scenario for
Deterministic code

Channel capacity does not have a general, closed form expression
As a black box method it provides diversity with semantic content

Search algorithms may be employed to partially reverse the program semantics
(Currently under investigation)

Max possible value of H(A)

Search for test set with max output diversity

Testing against decentralised policies
HyperGI and recent work on side channel leakage use global (monolithic) policies

e.g. LBAC

An alternative, and closer to the spirit of CHERI (possibly)
Is the Myers/Liskov decentralised label model (DLM)

Provides security guarantees to users and groups

Uses labels that describe the allowed flow of information in the program

Allows users to declassify their own data

A decentralized model for information flow control
AC Myers, B Liskov
ACM Symposium on Operating Systems Principles (SOSP) 1997

Jif: Java information flow
AC Myers, L Zheng, S Zdancewic, S Chong, N Nystrom
Software release. Located at http://www.cs.cornell.edu/jif 2001

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ovlpa_IAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=ovlpa_IAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ovlpa_IAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=ovlpa_IAAAAJ:Tyk-4Ss8FVUC
http://www.cs.cornell.edu/jif

Labels
DLM achieves global IFC through local enforcement

Chief instrument is an ordering on labels

Can extend labels to writers

Labels for derived values
When a program combines values with different labels

Values can only be written to a slot if the resulting label is a restriction
i.e. label on data lower than label on slot

Data in a program is input/output via user labeled channels

Data containers are called slots

Can create LBAC lattices from the user labels

Some questions

Does CHERI need IFC?

Does DLM suggest a basis for testing and repair of IFC in a CHERI context?

Can DLM provide a basis for a formal method for reasoning about correct IFC in a CHERI context?

