
Porting Rust to Morello
A safe software layer for a safe hardware layer

Sarah Harris, Simon Cooksey, Mark Batty

{S.E.Harris,S.J.Cooksey,M.J.Batty}@kent.ac.uk
September 2022



Rust

I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.

I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust
I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.
fn main() {

let mut x : [u8; 8] = [0; 8];
x[9] = 1;

}

I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust
I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.
fn main() {

let mut x : [u8; 8] = [0; 8];
x[9] = 1;

}
$ rustc ./main.rs -o oob-compile
error: this operation will panic at runtime
--> src/main.rs:3:5

|
3 | x[9] = 1;

| ^^^^ index out of bounds: the length is 8 but the index is 9
|

I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust

I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.
I Rust is designed to be used in places where C/C++ is used.

I Rust has an escape keyword unsafe.
fn main() {

let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust

I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.
I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}

$ ./oob-runtime
Segmentation fault



Rust

I Rust is designed to be a safe systems programming language.
I The compiler statically verifies that memory safety issues like

use-after-free, and buffer overruns cannot happen.
I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code

I Capabilities provide run-time guarantees for unsafe code



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



The Rust Compiler

Parser High-level IR Middle IR LLVM IR

x86

ARM

Morello

…



The Rust Compiler

Parser High-level IR Middle IR LLVM IR

x86

ARM

Morello

…



Compiler changes — plumbing

The first task is hooking Rust up with Morello LLVM.
I We added a target, and set the appropriate options
I We hooked up Morello clang as the linker for the Rust compiler
I We extended the Rust target options to allow us to describe

object layout differences…



Compiler changes — object layout

Object layout differences, you say?
I usize is a type which must represent the whole range of

addresses a pointer can dereference.
I It is used for array indexing, and array bounds.
I We don’t want usize to be 128 bits, memory isn’t 128 bit on

Morello†.
I So, we needed to change the layout of a pointer instead.

†This approach was explored by Nicholas Sim in his Masters Thesis.



Compiler changes — object layout

pub fn target() -> Target {
Target {

llvm_target: "aarch64-unknown-freebsd".to_string(),
pointer_range: 64,
pointer_width: 128,
data_layout: /* ... */,
arch: "aarch64".to_string(),
options: TargetOptions {

features: "+morello,+c64".to_string(),
llvm_abiname: "purecap".to_string(),
max_atomic_width: Some(128),
// Atomic pointers are supported and converting to integers
// invalidates capabilities so we *must* use atomic pointers.
atomic_pointers_via_integers: false,
// TODO: figure out why this optimisation causes crashes when building libc.
merge_functions: MergeFunctions::Disabled,
..super::freebsd_base::opts()

},
}

}



Compiler changes — constant evaluation

I Rust’s IR is interpreted within the compiler to do constant
evaluation.

I If it attempts to read uninitialised data that’s considered an
error.

I We cannot initialise the metadata of these pointers at compile
time, so we had to patch up that divide.



Compiler changes — code generation

There are some baked in assumptions in the Rust compiler about valid
operations on pointers, for example…
if ty.is_unsafe_ptr() {

// Some platforms do not support atomic operations on pointers,
// so we cast to integer first.
let ptr_llty = bx.type_ptr_to(bx.type_isize());
ptr = bx.pointercast(ptr, ptr_llty);
val = bx.ptrtoint(val, bx.type_isize());

}



Standard library changes

I We’re not done here, yet.
I The worst so far has been in a concurrency library which casts

pointers to/from integers to tag them with metadata in the
lower bits.

I Some bits of the FFI needed some tweaks, integer types being
replaced with pointer types.

pub unsafe fn cast_from_usize(signal_ptr: usize) -> SignalToken {
SignalToken { inner: mem::transmute(signal_ptr) }

}



What’s done

I The compiler emits Purecap code for the Morello machine.
I The core part of the standard library is ported, and fairly well

tested.
I Various parts of the Rust infrastructure are ported to Morello.
I std is ported, but not as thoroughly tested and there are some

known bugs to work through.

Demo



What’s done

I The compiler emits Purecap code for the Morello machine.
I The core part of the standard library is ported, and fairly well

tested.
I Various parts of the Rust infrastructure are ported to Morello.
I std is ported, but not as thoroughly tested and there are some

known bugs to work through.

Demo



Remaining challenges

I Porting the rest of the standard library.
I Looking at some code-gen bugs which appear to come from

LLVM.
I Port substantial 3rd party software built in Rust to Morello.
I Two optimisations are disabled: SROA, and Function Merging.



What’s next?

1. Performance measurements: how much does the Rust runtime
cost, how much does Morello cost?
I We have some early work on this. Rust runtime checks look to be

on the order of 10% in our testing†.
2. Semantic modelling: how much of the semantics of Morello

subsumes the guarantees in safe Rust?
3. Compiler optimisation: will the semantics of Morello allow us to

remove some dynamic checks from Rust code, but retain Rust’s
safety properties?

4. Compiler optimisation: can we use the Morello prototype’s
hybrid mode to have zero-overhead statically verified code, and
capability checked unsafe code?

†Very early results, not science (yet)!



Formal Verification Goals

I Formalize a semantics for Rust Middle IR (MIR)

JPKMIR

I Prove that compiler optimisations for MIR are sound
I Prove that MIR is sound with respect to Rust semantics
I Prove that MIR can be compiled to Morello
I Prove that any safe Rust code cannot cause a capability fault



Formal Verification Goals

I Formalize a semantics for Rust Middle IR (MIR)
I Prove that compiler optimisations for MIR are sound

Jopt(P)KMIR ⊆ JPKMIR

I Prove that MIR is sound with respect to Rust semantics
I Prove that MIR can be compiled to Morello
I Prove that any safe Rust code cannot cause a capability fault



Formal Verification Goals

I Formalize a semantics for Rust Middle IR (MIR)
I Prove that compiler optimisations for MIR are sound
I Prove that MIR is sound with respect to Rust semantics

Jrustc(P)KMIR ⊆ JPKRust

I Prove that MIR can be compiled to Morello
I Prove that any safe Rust code cannot cause a capability fault



Formal Verification Goals

I Formalize a semantics for Rust Middle IR (MIR)
I Prove that compiler optimisations for MIR are sound
I Prove that MIR is sound with respect to Rust semantics
I Prove that MIR can be compiled to Morello

Jrustc(P)KCHERI ⊆ JPKMIR

I Prove that any safe Rust code cannot cause a capability fault



Formal Verification Goals

I Formalize a semantics for Rust Middle IR (MIR)
I Prove that compiler optimisations for MIR are sound
I Prove that MIR is sound with respect to Rust semantics
I Prove that MIR can be compiled to Morello
I Prove that any safe Rust code cannot cause a capability fault

safe(P) =⇒ @X ∈ Jrustc(P)KCHERI.faulty(X)



Thanks for listening!
Any questions?


	Background
	Compiler changes
	Done, and todo
	Conclusion

