
© Copyright 2022 Arm Limited

Yury Khrustalev -- Arm

06/09/2022

Compartments and
other aspects of Morello
software work

CHERI Technical Workshop 2022

2 © 2022 Arm

• Morello toolchains and libraries: GCC, LLVM, Musl libc, etc

• OS bring-up: Android and Linux

• Morello compartmentalisation

• Tools and resources: CHERISeed, Morello IE

Agenda

3 © 2022 Arm

Software tools for Morello
GNU toolchain

• Binutils

• GCC

• GDB

• Binutils

LLVM toolchain

• Clang and tools

• LLD

• LLDB

• Runtime libraries

Morello Firmware

• Images for Morello board

Morello Platform Model

• Functional model of the
Morello platform

• Supports the same
software stacks as the
hardware

CHERIseed

• Software-only
implementation of CHERI
C/C++ semantics

• Based on compiler
instrumentation

Morello Instruction Emulator

• Run Morello applications

• Trace and debug

• Analyse performance

Bionic

• C library for Android

Glibc

• Implementation in progress

Musl C library

• Purecap target

• POSIX threads

• LDSO

Newlib

• C library for Baremetal

Libshim

• Syscall translation layer

Linux Kernel

• Pure Capability user ABI

Morello Development Studio

• Arm Debugger for bare-
metal debug of the Morello
FVP and Morello Board

• Support to import LLVM
and GNU compilation tools

• Example projects to get
started

4 © 2022 Arm

• Ongoing development with quarterly feature updates

• Prebuilt images for Morello board

• Standard 64-bit components supporting booting capability-enlightened environments

• UEFI boot manager to boot OS images from PCI devices and network boot

• Morello is supported as an open research platform

Morello Firmware

5 © 2022 Arm

• A full Android R profile 64-bit stack is supported on the Morello board

• Includes Morello purecap ports of the Android C library (Bionic) and a range of utilities
and workloads introduced into a 64-bit AOSP environment

• Minimally modified ACK & userspace libshim support syscalls from purecap applications

• Enables a range of porting and research activities ahead of a full PCuABI kernel
implementation

Morello Android

6 © 2022 Arm

Morello Android
Current internal activities

• Ongoing Bionic development, aligning with
evolving Kernel PCuABI

Future work areas

• Currently investigating possible activities in
other areas of Android

• Examples under discussion include minimal ART
configurations or constrained approaches to
porting elements of the Android graphics stack

7 © 2022 Arm

• Main goal: supporting the pure-capability kernel-user ABI (PCuABI)
• Ongoing effort to specify this ABI, candidate spec now public [1]

• Hybrid approach: in-kernel ABI unchanged, (only) user pointers become capabilities
• Support for the traditional AArch64 ABI preserved through the COMPAT layer

• Status: prototype publicly released, targeting a transitional ABI [2]
• Tested on the Morello board and FVP
• Only functional PCuABI support at this stage: no enforcement of capability metadata
• Support for a reduced set of syscalls and CONFIG options

[1] https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification

[2] https://git.morello-project.org/morello/kernel/linux/-/wikis/Transitional-Morello-pure-capability-kernel-user-Linux-ABI-specification

Morello Linux Kernel

https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification
https://git.morello-project.org/morello/kernel/linux/-/wikis/Transitional-Morello-pure-capability-kernel-user-Linux-ABI-specification

8 © 2022 Arm

• Current focus: kernel testing
• Morello kselftests run in Morello GitLab CI
• A subset of LTP and Musl tests are being deployed

• Next steps:
• Progressing towards the complete PCuABI, primarily by restricting and enforcing capability bounds /

permissions
• Extending the number of supported syscalls and CONFIG options

• All development is now happening in the open - contributions welcome!
• Kernel repo: https://git.morello-project.org/morello/kernel/linux
• Mailing list: https://op-lists.linaro.org/mailman3/lists/linux-morello.op-lists.linaro.org/

Morello Linux Kernel

https://git.morello-project.org/morello/kernel/linux
https://op-lists.linaro.org/mailman3/lists/linux-morello.op-lists.linaro.org/

9 © 2022 Arm

Morello toolchains
GNU toolchain

• Targeting Baremetal and Linux

• Binutils, GDB and other tools

• Glibc

• git://sourceware.org/git/binutils-gdb.git
branch: users/ARM/morello-binutils-gdb-master

• git://gcc.gnu.org/git/gcc.git
branch: vendors/ARM/heads/morello

• git://sourceware.org/git/glibc.git
branch: arm/morello/main

• git://sourceware.org/git/binutils-gdb.git
branch: users/ARM/morello-binutils-gdb-master

LLVM toolchain

• Targeting Baremetal, Android and Linux

• LLDB and other usual LLVM utilities

• https://git.morello-project.org/morello/llvm-project

• https://git.morello-project.org/morello/llvm-project-
releases
branch: morello/release-1.4
branch: morello/baremetal-release-1.4
branch: morello/linux-aarch64-release-1.4

https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/llvm-project-releases

© 2022 Arm

Compartments

11 © 2022 Arm

Sealed Capabilities in Morello

Sealed capability

Can’t be modified

Can’t be dereferencedCan’t be branched to

Can’t be used to seal or
unseal another capability

12 © 2022 Arm

Sealed Capabilities in Morello
Object Type (15 bits) To seal a capability, you need

• Sealing with any object type:
• an unsealed capability
• sealer capability that

is in bounds
has SEAL permission
is valid (tag == 1)
has value == object type

• Sealing with reserved object type:
• an unsealed capability

Special types:
1, 2, 3

Custom types:
≥ 8

RB LPB LB any other any other

special branch

operations

custom

use cases

BR and BLR

targets

1 2 3 4 5 6 7 8 … 32767

13 © 2022 Arm

• Consider compartmentalisation in terms of transitions across boundaries between
security domains

• Symmetrical model that works for any type of trust-mistrust relationship (both ways)

• Focus on the information that is transferred across the boundary in any direction

• …and what data is protected against leaking through the boundary

• Compartmentalisation is managing transitions between security domains

Compartmentalisation

14 © 2022 Arm

Threat model

• An application is partitioned
into security domains

• Some security domain may
be compromised

• Aim is to prevent escaping
from the compromised
compartment

• We want to restrict access to
data and execution of code
in other security domains

Overview

• Arbitrary* read and write
memory gadgets

• Arbitrary read and write
register gadgets

• Forged code (function)
pointers

• Sealing and unsealing
gadgets

• CVTP gadget (makes
arbitrary code pointers)

• Read and write data inside
the compartment

• Access and infer data in the
compartment

• Modify register values to
"program" gadgets

• Create valid code pointers

• Take over control flow*

An adversary has… An adversary can…

15 © 2022 Arm

Primitives for cross-domain transition

Load Pair
and

Branch

Branch to
Sealed

Capability
Pair

Switch to
Restricted

Mode

Unseal,
Load and

Branch

16 © 2022 Arm

Primitives for cross-domain transition
LPB, ULB, BSP

• Work on capability pair {data, code} that
can be referred to as "compartment descriptor"

• Are associated with a branch operation

• Update frame pointer CFP

• Involve an unsealing-during-branch operation
which means they work on sentries

• Are easy to deploy

• Non-atomic stack isolation

• Have similar security properties, however
Branch to Sealed Pair primitive is robust against
compartment descriptor forgery attack

Switch to Restricted Mode

• Switch to Restricted Mode is special

• No custom branch operation is required

• No unsealing (except for common RB-unsealing).

• Requires special version of libc and dynamic
linker

• A special version of kernel supporting this might
also be handy, although not required

• Atomic stack isolation

17 © 2022 Arm

Morello Compartmentalisation
Very basic compartment switch idea

Compartment A Compartment BCompartment manager

Parse compartment entry

Save source context

source target

Initialise target context

Compartment call (data, code)

Sanitise registers Target code

The code points to CM’s
trampoline code

"Trampoline" code

The data points to the
transitional state

Target entry code
pointer is loaded from
the transitional state

Contexts are stored in the
transitional state

18 © 2022 Arm

• Restricting stack accesses by initializing compartment ’s stack and switching stacks

• Heap accesses protected by capabilities returned by mmap or malloc or alike

• PC-relative accesses may be restricted in terms of PCC bounds and permissions (for
example, preventing access to sensitive system registers)

• Any other sources of capabilities should be sanitized

• Arbitrary sized compartments: function, object, DSO, etc.

• Reusable compartment allocations (depending on trust model)

Purecap Compartmentalisation

© 2022 Arm

Trying out Morello at home

20 © 2022 Arm

• GNU and LLVM toolchains for Morello targets are available in source and binary form

• Arm traditionally provides Morello FVP that can be used to boot Android or Linux

• This can be used to build and run purecap Morello applications

• There are other tools that could be of interest for researchers and software developers

• All the above aims to provide quick hands-on experience with CHERI / Morello to help
understand new properties, security guarantees, performance and deployment
applications

How to try Morello

21 © 2022 Arm

• CHERIseed is based on CHERI/Morello LLVM and uses sanitizer-like approach

• Allows to build programs with CHERI semantics on widely available machines

• Enables step-by-step approach for porting existing code to CHERI

• Provides CHERI at C/C++ level and helps understand capabilities

• Open source

• Start here:
• https://git.morello-project.org/morello/llvm-project/-/blob/cheriseed/clang/docs/CHERIseed.rst
• https://git.morello-project.org/morello/llvm-project/-

/blob/cheriseed/clang/docs/CHERIseedDesign.rst

CHERIseed and libshim

https://git.morello-project.org/morello/llvm-project/-/blob/cheriseed/clang/docs/CHERIseed.rst
https://git.morello-project.org/morello/llvm-project/-/blob/cheriseed/clang/docs/CHERIseedDesign.rst

22 © 2022 Arm

Morello Instruction Emulator

• DBT tool for running Morello
applications in a non-Morello
Linux environment

• Capability registers

• Memory tags

• Syscall translation: libshim or
work-in-progress built-in
support

What's inside

• Experiments with Morello
applications on non-Morello
AArch64 Linux systems

• Evaluate compartment solutions
and experiment with the new
syscall ABI

• Test, debug and trace existing
software being ported to
Morello

• Trace-based performance
analysis and cache modelling

What it does How it works

Emulator

Tracer

Cache model

Debugger

Morello application

AArch64 Linux

Armv8.2 hardware

https://developer.arm.com/downloads/-/morello-instruction-emulator

https://developer.arm.com/documentation/102270/

https://developer.arm.com/downloads/-/morello-instruction-emulator
https://developer.arm.com/documentation/102270/

23 © 2022 Arm

• https://www.arm.com/architecture/cpu/morello

• https://developer.arm.com/Tools and Software/Morello Development Tools

• https://www.morello-project.org/

Resources and more information

https://www.arm.com/architecture/cpu/morello
https://developer.arm.com/Tools%20and%20Software/Morello%20Development%20Tools
https://www.morello-project.org/

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

