
Porting C/C++ 
software to 
Morello
Alex Richardson



CHERI C/C++

● Pure-capability environments use a C/C++ variant we call CHERI C/C++.
● CHERI C/C++ is very similar to “normal” C/C++ with a few difference such as:

○ On Morello, pointers require 16-byte alignment.
○ (u)intptr_t is not the same type as (unsigned) long.
○ Pointers created from a (non-uintptr_t) integer are not dereferenceable.
○ Pointers are tightly bounded and cannot be used to access adjacent 

objects.
● With C99 (or better C11) features such as (u)intptr_t and max_align_t, 

targeting CHERI C/C++ is mostly a matter of using correct types.



CHERI C/C++

● CHERI C/C++ is highly compatible with existing code.
○ In many cases, no changes are required to run code on Morello!
○ This is especially likely for higher-level C++ code (e.g. desktop 

applications) – for KDE on X11 it was only 0.026% of the 6M SLoC.
● However, some (low-level) code uses patterns that are not compatible with 

the strict provenance semantics enforced by CHERI C/C++
● In general, only language runtimes or OS kernels might require significant 

adaptation.
● For other projects, minor changes such as changing individual casts or 

increasing the alignment of custom allocators should be sufficient.



Converting integers to pointers 

● In CHERI C/C++ unsigned long cannot store the capability metadata
○ Casting from pointer to integer strips the capability metadata.
○ Usually flagged by the compiler by emitting a warning when creating a pointer 

from an integer.
● Casting via uintptr_t generally resolves this problem.



Converting integers to pointers: -Wshorten-cap-to-int

● Truncating capability metadata can result in crashes if converted back to a pointer.
● Based on 32 → 64-bit transition warning -Wshorten-64-to-32
● Real-world example from QtDeclarative (explicit uint64_t for 32-bit systems):

https://github.com/CTSRD-CHERI/qtdeclarative/commit/f809a79a137ea28d39b492f37c9c28730862ad60


Checking for 64-bit architectures (__LP64__)

● The __LP64__ macro is often used to detect whether registers are 64 or 32 bits.
● This macro is not defined for CHERI C/C++, which can cause software to assume a 

32-bit architecture (example fix from the X11 libraries):

https://gitlab.freedesktop.org/xorg/proto/xorgproto/-/merge_requests/41/diffs?commit_id=a0ed054ee2c334941dfe9eaa7bcfdbbe6907e1b5


Ambiguous provenance

● CHERI C/C++ using a single-provenance semantics, i.e. every pointer must be 
derived from exactly one other pointer.

● For binary arithmetic operations on (u)intptr_t, the compiler might not be able 
to determine which operand is a pointer and which one is the offset/mask.

● The fallback behaviour is to use the left-hand operand (which is usually correct).
● Unlike addition, subtraction and bitwise-& can return either a pointer or an integer.
● Fixed by casting to a non-provenance-carrying type (example from FontConfig).

https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/190/diffs


When the compiler can’t help anymore

● Running programs under gdb (gdb -ex=r --args <cmd>) will generally stop 
close to where the underlying issue is.

● In many cases, the incorrect arithmetic, etc. will only be one or two stack frames up



Incorrectly aligned capabilities

● Some projects have custom allocators (or wrap malloc to insert additional 
metadata). However, in many cases these allocators hardcode 8 byte alignment.

● If C11 can be used, aligning to _Alignof(max_align_t) is the correct fix, and if 
not a patch with a type that matches the intended usage may be upstreamable.

Wrapped malloc() in SQLite DBus pool allocator

https://github.com/CTSRD-CHERI/sqlite/commit/12f106853719a92ade19e3b2295b8a463a38c08e
https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/318/diffs?commit_id=999c29745fbba6572f3c3a1996fafdcd46d0d16d


Incorrectly aligned capabilities

Insufficient heapframe alignment in PCRE (PCRE_SIZE is only 8 bytes)

https://github.com/PCRE2Project/pcre2/pull/72


Updating pointers after realloc()

● The pointer returned from realloc() will have different bounds than the previous 
allocation (even when growing in-place!)

● Attempting to update any pointers using the previous pointer will give a value that 
still has the old bounds.
○ For in-place realloc(), this will not cover the entire new range (or too much in 

case of shrinking realloc() calls).
○ If the new pointer is not close to the old one, this arithmetic will create a 

capability that is so far out of bounds that the tag will be cleared.
● Many realloc() calls include this kind of UB, so it’s worth auditing calls



Updating pointers after realloc()

● Instead of adding a delta, inner pointers must be rederived (example from libX11)

https://gitlab.freedesktop.org/xorg/lib/libx11/-/merge_requests/77/diffs?commit_id=d01d23374107f6fc55511f02559cf75be7bdf448#diff-content-1a3fa6319db822f74b25c497f8e3767aa241b327


CHERI UBSan (-fsanitize=cheri)

● To help find places where capability tags are being lost, the CHERI LLVM compiler 
includes an (experimental) -fsanitize=cheri compiler option.

● Instruments all pointer arithmetic to identify where capabilities become 
unrepresentable.

● Could also be made stricter to identify any non-ISO-C compliant pointer:
○ Only in-bounds and one-past-the-end pointers are legal.
○ Not implemented yet, but is easy to add.

● Often finds updates to pointers after realloc (the difference will often be enough to 
make capabilities unrepresentable)

● However, there are still false positives:
○ if (my_uintptr & 1){…} triggers a false-positive tag loss error.
○ Same when adding a large offset and then casting to a non-capability type.



-fsanitize=cheri code generation



Out-of-bounds accesses

● CHERI sometimes detects 
out-of-bounds accesses that 
are not noticed otherwise.

● The most common case I have 
observed is reading beyond 
bounded buffers derived from 
string literals [1, 2, 3, 4].

● This happens to work on 
conventional architectures and 
with ASan, but fails when 
buffers are tightly bounded.

https://github.com/CTSRD-CHERI/qtbase/commit/643ec2cea5331c2ab6552a9145fb05334a886519
https://github.com/CTSRD-CHERI/qtbase/commit/e8367b2fb603d53a08f0bc26862b48b0be1ddf62
https://invent.kde.org/frameworks/kio/-/merge_requests/493/diffs?commit_id=8ff4840200722a42cc4af83dd86ed3afe025df59
https://gitlab.freedesktop.org/xorg/lib/libxfont/-/merge_requests/10/diffs?commit_id=daff8876379c64c7bee126319af804896f83b5da


(Inline) Assembly Code

● Finally, you may encounter some (inline) assembly.
● Should be very rare – could be manually vectorized code or extremely low-level 

projects such as kernels or language runtimes.
● Requires the most effort and cannot be diagnosed by the compiler (although it will 

error on invalid syntax)
● For Morello, in simple cases replacing x-registers with c-registers can be sufficient, 

but this is highly dependent on the project (partial example from libffi)

https://github.com/CTSRD-CHERI/libffi/commit/224022417b197f790b009d001c9f03469a6dc1a6


Porting process overview

1. Pick target project and check if it has already been ported (CTSRD-CHERI GitHub, 
patches in CheriBSD ports collection, CHERI Slack channels).

2. Run pkg64 install llvm-base and try compiling the project.
3. Fix CHERI-specific compiler warnings (unless you are sure they are false-positives).
4. Try running the testsuite and hopefully everything passes (or at least matches the 

AArch64 baseline, as many projects have test failures on FreeBSD).
5. If not, use GDB to identify where CHERI errors are happening.
6. In case there is a non-obvious missing capability tag, try rebuilding with 

-fsanitize=cheri and -Wshorten-cap-to-int.
7. Failure mode still not obvious? Look for calls to realloc() or custom allocators.
8. Still not working? Looks like you may have picked one of the difficult cases… 

(assembly code, serialization of pointers, misuse of varags, etc.)



Conclusion

● Writing software for CHERI C/C++ should not require significant changes.
○ In my experience, updating build systems usually took more time than changing 

the actual C/C++ code (hopefully not required for CMake/Meson)!
● While there may be some false-positives, fixing CHERI-LLVM compiler warnings is 

often sufficient to port software.
● If the software fails at run time, GDB will usually locate the cause quickly

○ In case of a missing capability tag, compiling with -Wshorten-cap-to-int 
and -fsanitize=cheri will make it easier to identify where the tag is lost.

○ Audit calls to realloc() and nested allocators 
● If you encounter any further issues that could be diagnosed by the compiler, please 

file compiler enhancement requests on GitHub :)

https://github.com/CTSRD-CHERI/llvm-project/issues/new

