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Clouds: Isolation vs. Sharing
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VMs: Strong, Heavyweight Isolation

+ Strong isolation guarantees

+ Small(ish) trusted computing base (TCB)
— Only hypervisor

Network communication for sharing = TCP/IP
— Requires data serialisation and copying

Expensive transitions between services
— Hypercalls = 50 x syscalls
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Containers: Weak, Lightweight Isolation
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—> Challenge: efficient data sharing with small TCB



VMs & Containers: The MMU Tax

Memory Management Unit (MMU) is a privileged entity
— Intermediary (kernel) is always involved in IPC - Shared TCB, sys/hyper-calls

MMU shares data at page granularity
— Sharing may expose extra data

Can we use another technology for isolation and sharing?
- CHERI: isolation at byte granularity, low dependency on the kernel



CHERI Capabilities

Fat pointers protected by hardware:
— base + length, cursor

—  permission, tag 03 0. llength

—  byte-granularity* perms I otype | bounds |

. . . . address =7
Fine-grained isolation Toase

Limited Dependency on OS kernel
Available: Arm CHERI Morello Boards (Armva8)

Capabilities can be created only from capabilities
— Using cap-aware instructions, but not the intermediary




Challenges of Cloud Stack with
Hardware Capabilities

What would a cloud stack look like if hardware provided efficient

mechanisms to share arbitrary-sized memory regions between otherwise
isolated entities?

Challenges:

C1. Support capability-unaware software
C2. Provide small-TCB OS functionality

C3. Enable efficient capability-based IPC interfaces



cVM: Intra-Process VM-like Abstraction

1. Support cap-unaware software

PR :'.-'-'-'-'-'-'-'-'-'-'-'I :
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3. Cap-based IPC interfaces o nver

— CP File: efficient data sharing Host OS

— CP_Call: remote code invocation

cVM ~Isolation




Capabilities can Isolate and Share

Native ABI: cap-unaware code
Pure-capability ABI: requires porting

Hybrid-capability ABI: native + cap-aware code

Fine-grained compartmentalisation:

— Cap-unaware instructions are constrained by default caps o 1d/sd/jr
— Hybrid code can use capability-aware instructions S Native
S code
<
2 v 1d.cap

- Can be used for isolation and IPC primitives



Support for Native Software

Goals:
— POSIX environment
— Cloud deployment model (e.g. Docker or VMs)

- Service for cVM is shipped as disk image
— Native cap-unaware PIE binaries
— Compatibility: C standard library (musl libc)

- Intravisor allocates cVM, loads Init and disk

Program/lib

Dependencies (.so libs)

LibC(musl)

Init

cVM

-

Intravisor

Kernel
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Small-TCB OS Functionality

Goals: .

— Necessary OS components T —1

L Program/lib Dependencies (.so libs) | '

— Small attack surface X : ¥
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IPC-Like Interfaces Using Capabilities

cVM
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CP File -read/write remote memory at byte granularity using caps

CP Call -call afunctionin acVM
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IPC-Like Interfaces Using Capabilities

CP_File -asynchronous data acces

S
- Base for complex IPC interfaces
CP Call - notification mechanism

CP Stream - stream-oriented IPC interface

* Destination buffer unknown to the sender
* Recipient pre-registers input buffers and uses cp poll to get a notification
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Threat Model

Attacker free to run any code, even cap-aware

CHERI instructions

They can get access to entire cVM including
compromised libOS

They may try to abuse CP Files, CP Calls,
hostcall, and the kernel

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Caps Library OS

Intravisor

Host OS kernel
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Security Analysis

Kernel ignores syscalls
-> cannot abuse the kernel

CP Files are data caps
- cannot be used for CInvoke

cVMs cannot store or export caps
—> cannot access revoked data

Hostcall caps are sealed
-> cannot be changed

Attacker

Caps Library OS

Hostcall interface

Intravisor

Host OS kernel

- Attacker cannot escape the cVM or gain unauthorised access to data




Prototype

Platforms:
— CHERI RISC-V64, QEMU, AWS F1 (agfi-026d853003d6¢c433a)
— CheriBSD (host), LKL v4.17 with musl v1.2.1 (cVMs)
— SiFive HiFive Unmatched (No CHERI, but multi-core)

Application and services (In the paper):
— Redis, Data-processing utilities, Python3 with modules, SQLite, benchmarks
— Multi-tier microservice (NGINX with API gate, Redis — SiFive only)

Evaluation question: Performance of cVM IPC primitives?
— Basic: memcpy, mmap+memcpy
— cVMs: CP_File, CP_Stream
— FreeBSD: pipe, Unix, and TCP sockets
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Performance (MB/s)
N
(0a]

Comparing with IPC Mechanisms

pipe

CP_File

1.5

2.4x

Data size, MB

+

CP_FILE VS. memcpy.
— 6% slower

CP Stream faster (1.2 MB+)
— Privileged execution

Unix, TCP, mmap+memcpy:
— Less than 2.4-3.6 MB/s

Processes: 1.6 MB/s max
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Conclusion

Small-TCB isolation with efficient data sharing in clouds is challenging:
— Containers - large shared TCB with relatively fast IPC mechanisms
— VMs - small TCB with slow IPC mechanisms

CAP-VMs provide VM-like abstraction:

— Secure isolation using memory capabilities
— Controlled shared TCB by private libraryOSs
— Efficient data sharing using capability-based IPC primitives
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Sources

Available at http://github.com/Isds/intravisor:
— Runtime: musl-LKL, baremetal
— Musl-LKL: cp_file, cp_stream, docker-based images (Redis, NGINX), helloworld, python, sqlite
— Baremetal: two pure cVMs, two nested cVMs, hello world
— Arch: RISC-V

Future plans:
— Pure cVMs mostly
— Arm Morello
— Next major update: Jan’23

Thank You — Any Questions?
Vasily A. Sartakov
v.sartakov@imperial.ac.uk
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