
Vasily A. Sartakov
Imperial College London

http://lsds.doc.ic.ac.uk
<v.sartakov@imperial.ac.uk>

CHERITech – September 2022

Large-Scale Data & Systems Group

Joint work with Lluís Vilanova1, David Eyers2, Takahiro Shinagawa3, Peter Pietzuch1

Imperial College London1, University of Otago2, The University of Tokyo3

Intravisor: Type-3 Hypervisor for
Capability-Based Virtual Machines

Analytics
service
(Python)

Clouds: Isolation vs. Sharing

• Cloud services must be isolated
from each other and the cloud stack

• Services must share data efficiently
by crossing isolation boundaries

2

Storage
service
(Redis)

OS kernel/Hypervisor

data

Cloud stack

Hardware

code

VMs: Strong, Heavyweight Isolation

• Strong isolation guarantees
• Small(ish) trusted computing base (TCB)

– Only hypervisor

• Network communication for sharing à TCP/IP
– Requires data serialisation and copying

• Expensive transitions between services
– Hypercalls ≈ 50 × syscalls

3

Hypervisor

+
+

-

-

Storage
VM

Analytics
VM

OS kernel OS kernel

src

net net

dst

Hardware

Containers: Weak, Lightweight Isolation

• Lightweight OS namespace isolation
• Efficient IPC mechanisms

• Large TCB due to shared OS kernel
– Shared kernel has much unnecessary

functionality

4
à Challenge: efficient data sharing with small TCB

Storage
container

Analytics
container

FS IPC Net

…

+
+

-

OS kernel

src dst

Hardware

VMs & Containers: The MMU Tax

Memory Management Unit (MMU) is a privileged entity
– Intermediary (kernel) is always involved in IPC à Shared TCB, sys/hyper-calls

MMU shares data at page granularity
– Sharing may expose extra data

5

• Can we use another technology for isolation and sharing?
• à CHERI: isolation at byte granularity, low dependency on the kernel

CHERI Capabilities

Fat pointers protected by hardware:
– base + length, cursor
– permission, tag
– byte-granularity*

Fine-grained isolation
Limited Dependency on OS kernel
Available: Arm CHERI Morello Boards (Armv8)

Capabilities can be created only from capabilities
– Using cap-aware instructions, but not the intermediary

6

perms otype bounds

address

length

base

063

Challenges of Cloud Stack with
Hardware Capabilities

What would a cloud stack look like if hardware provided efficient
mechanisms to share arbitrary-sized memory regions between otherwise
isolated entities?

7

Challenges:
C1. Support capability-unaware software
C2. Provide small-TCB OS functionality
C3. Enable efficient capability-based IPC interfaces

cVM: Intra-Process VM-like Abstraction

1. Support cap-unaware software
à Isolated execution of native applications

8

2. Small shared TCB
à Private namespaces by library OSs

Intravisor

Host OS

libOS

Prog

libOS

Prog

CP
FILE

cVMcVM

3. Cap-based IPC interfaces
– CP_File: efficient data sharing
– CP_Call: remote code invocation

cVM Isolation

Capabilities can Isolate and Share

Native ABI: cap-unaware code
Pure-capability ABI: requires porting
Hybrid-capability ABI: native + cap-aware code

9

Fine-grained compartmentalisation:
– Cap-unaware instructions are constrained by default caps
– Hybrid code can use capability-aware instructions

à Can be used for isolation and IPC primitives

Native
code
ld.capDe

fa
ul

t c
ap

s

X

ld/sd/jr

Support for Native Software

Goals:
– POSIX environment
– Cloud deployment model (e.g. Docker or VMs)

10

à Service for cVM is shipped as disk image
– Native cap-unaware PIE binaries
– Compatibility: C standard library (musl libc)

à Intravisor allocates cVM, loads Init and disk

Intravisor

LibC(musl)

Program/lib Dependencies (.so libs)

Kernel

Init
cVM

Small-TCB OS Functionality

Goals:
– Necessary OS components
– Small attack surface

11

à Private LibraryOSs provide OS functionality
à Intravisor provides time/net/disk
à Nested Isolation layers Intravisor

InitLibraryOSnetwork Init
VNS /dev/cpstorage

LibC(musl)

Program/lib Dependencies (.so libs)

syscalls via CInvoke

hostcalls via CInvoke

IPC-Like Interfaces Using Capabilities

• Data sharing primitives efficient if:
• Non-shared and without intermediary on critical path
• Well-known API (POSIX)
• Usable by cap-unaware code

12

• CP_File – read/write remote memory at byte granularity using caps
• CP_Call – call a function in a cVM

CP_File
Program

B read

cVM

A

CP_Call

Program

B call
foo

cVM

foo()

cap-aware codenative code

libOS

libOS

syscalls

cVM

IPC-Like Interfaces Using Capabilities

13

CP_File – asynchronous data access

CP_Call – notification mechanism
à Base for complex IPC interfaces

CP_Stream – stream-oriented IPC interface
• Destination buffer unknown to the sender
• Recipient pre-registers input buffers and uses cp_poll to get a notification

Threat Model

Attacker free to run any code, even cap-aware
CHERI instructions

14

They can get access to entire cVM including
compromised libOS

They may try to abuse CP_Files, CP_Calls,
hostcall, and the kernel

Host OS kernel

Intravisor

Hostcall interface

Library OS

Attacker

Caps

Service

Security Analysis

Kernel ignores syscalls
à cannot abuse the kernel

15

CP_Files are data caps
à cannot be used for CInvoke

cVMs cannot store or export caps
à cannot access revoked data

X

Hostcall caps are sealed
à cannot be changed

à Attacker cannot escape the cVM or gain unauthorised access to data
Host OS kernel

Intravisor

Hostcall interface

Library OS

Attacker

Caps

Service

X

X
X

Prototype

Platforms:
– CHERI RISC-V64, QEMU, AWS F1 (agfi-026d853003d6c433a)
– CheriBSD (host), LKL v4.17 with musl v1.2.1 (cVMs)
– SiFive HiFive Unmatched (No CHERI, but multi-core)

Application and services (In the paper):
– Redis, Data-processing utilities, Python3 with modules, SQLite, benchmarks
– Multi-tier microservice (NGINX with API gate, Redis – SiFive only)

Evaluation question: Performance of cVM IPC primitives?
– Basic: memcpy, mmap+memcpy
– cVMs: CP_File, CP_Stream
– FreeBSD: pipe, Unix, and TCP sockets

16

Comparing with IPC Mechanisms

CP_FILE vs. memcpy:
– 6% slower

17

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
rf

or
m

an
ce

 (M
B/

s)

Data size, MB

CP_Stream faster (1.2 MB+)
– Privileged execution

Unix, TCP, mmap+memcpy:
– Less than 2.4-3.6 MB/s

Processes: 1.6 MB/s max

memcpy

CP_File
CP_Stream

pipe

2.4x

15x

1.5x

10x

Conclusion

18

Small-TCB isolation with efficient data sharing in clouds is challenging:
– Containers à large shared TCB with relatively fast IPC mechanisms
– VMs à small TCB with slow IPC mechanisms

CAP-VMs provide VM-like abstraction:
– Secure isolation using memory capabilities
– Controlled shared TCB by private libraryOSs
– Efficient data sharing using capability-based IPC primitives

Sources

19

Vasily A. Sartakov
v.sartakov@imperial.ac.uk

Thank You — Any Questions?

Available at http://github.com/lsds/intravisor:
– Runtime: musl-LKL, baremetal
– Musl-LKL: cp_file, cp_stream, docker-based images (Redis, NGINX), helloworld, python, sqlite
– Baremetal: two pure cVMs, two nested cVMs, hello world
– Arch: RISC-V

Future plans:
– Pure cVMs mostly
– Arm Morello
– Next major update: Jan’23

