Between the Lines: VM Assumptions

Laurence Tratt
https://tratt.net/laurie/

2020-11-05

What happens if we're wrong?

VM development is a destination

VM development is a destination

>

Completeness

Time

VM development is a destination

>

Completeness

Time

VM development is a destination

>

Completeness

VM development is a destination

>

Completeness

Time

VM development is a destination

>

Completeness

Time

VM development is a destination

>

Completeness

Time

VM development is a destination

A Perfection

Completeness

Time

VM development is a destination

Issues 4,932 Pull requests 198

VM development is a destination

VM development is a never-ending process

We know where the performance ceiling is

We know where the performance ceiling is

What is the best possible performance
for an input P?

We know where the performance ceiling is

A

Performance

— Me

We know where the performance ceiling is

A

— Otherl

Performance

— Me

We know where the performance ceiling is

A

Q

U

c

T

£

O

o Otherl
aly I Other2

— Me

We know where the performance ceiling is

(o))
U
<
S Other3
S
o Otherl
Aty Other?2

— Me

We know where the performance ceiling is

(o))

=l it

g — Other3
S

o Otherl
Aty Other?2

— Me

We know where the performance ceiling is

(ON Sl

=l it

g — Other3
S

o Otherl
Aty Other?2

— Me

We know where the performance ceiling is

(ON Sl

U

c

T

£

£

Q

O |— Other3
— Otherl
— Other2

Me

We know where the performance ceiling is

We don’t know how well we're doing

We're good at optimising abstractions

We're good at optimising abstractions

Most optimisations are ad-hoc and/or unpredictable

We're good at optimising abstractions

Most optimisations are ad-hoc and/or unpredictable

e.g. mono — poly — megamorphic JS calls

We're good at optimising abstractions

How to communicate optimisations to users?

We know what the impact of individual features is

We know what the impact of individual features is

What is the effect of e.g. pointer tagging?

We know what the impact of individual features is

What is the effect of e.g. pointer tagging?

GC and register allocation only
fairly deeply studied topics?

We know what the impact of individual features is

Hardware

We know what the impact of individual features is

Hardware: caches

We know what the impact of individual features is

Hardware: caches, predictors

We know what the impact of individual features is

Hardware: caches, predictors,
temperature

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches

We know what the impact of individual features is
Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

We know what the impact of individual features is
Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM

We know what the impact of individual features is
Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.
VM: compilation heuristics,

GC heuristics

We know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.
VM: compilation heuristics,

GC heuristics, etc.

We know how! features interact

Performance non-determinism is rife

Performance non-determinism

P t

Performance non-determinism

P t

Performance non-determinism

P t

P t

Performance non-determinism

P t

P t

P t

Performance non-determinism

P t

P t

P t

Performance non-determinism

Solution to performance non-determinism

Performance non-determinism

Solution to performance non-determinism:
non-determinism?

We understand howlarge systems perform

We understand howlarge systems perform

Richards, HotSpot, Linuxgs - 1240vs, Proc. exec. #8 (slowdown)

0.27393

0.26781

0.26168

0.25556

Time (secs)

0.24943

0.24331

0.23718
1 201 401 601 801 1001 1201 1401 1601 1801 2000
In-process iteration

We understand howlarge systems perform

Richards, HotSpot, Linuxgs - 1240vs, Proc. exec. #8 (slowdown)

0.27393

0.26781

0.26168

0.25556

Time (secs)

0.24943

0.24331

0.23718
1 201 401 601 801 1001 1201 1401 1601 1801 2000
In-process iteration

Microbenchmarks behave poorly

We understand howlarge systems perform

But that doesn’t affect real programs

We understand howlarge systems perform

How convenient!

We understand howlarge systems perform

What about compositionality?

Multi-language VIMs

Multi-language VIMs

VMs are expensive to create

Multi-language VIMs

VMs are expensive to create

Why not reuse that hard work?

Multi-language VIMs

VMs are expensive to create

Why not reuse that hard work?

CPython vs. Jython parable

Semantic mismatch

Semantic mismatch

<
Generic Specific

Semantic mismatch

x86

<
Generic Specific

Semantic mismatch

Python

A6 bytecode

<
Generic Specific

Semantic mismatch

JVM Python

A6 bytecode bytecode

<
Generic Specific

Semantic mismatch

JVM Python
x86 Q bytecode bytecode
<

Generic Specific

Semantic mismatch

.) JVM Python
x86 Continuations bytecode bytecode
<«

Generic Specific

Semantic mismatch

JVM Python
x86 bytecode bytecode
<

Generic Specific

Semantic mismatch

JVM Python

A6 bytecode bytecode

<
Generic Specific

Semantic mismatch

JVMPython
x86 bytecbgi®code

<
Generic Specific

Semantic mismatch

One solution: language design tweaks

Semantic mismatch

WASM will not solve the semantic mismatch

Semantic mismatch

WASM will not solve the semantic mismatch

Meta-VMs suffer much less

My benchmark suite is good, yours is bad

My benchmark suite is good, yours is bad

Fix memory leak in pdfjs.js. #42

Itratt wants to merge 2 commits into chromium:master from ltratt:master g

¢& Conversation 7 o Commits 2 & Checks 0 Files changed 1

ra

Itratt commented on Oct 2, 2016 « edited ~

A large amount of data is pushed into the global variable canvas_logs which isn't
cleared in runPdfJS. On each iteration the list grows, eventually significantly so.

On a Linux machine with a recent-ish V8, it manages 2777 iterations before an allocation
fails (at which point it's allocated over 2GiB of virtual memory, and used about 1.4Gib) and
V8 crashes (Fatal error in CALL_AND_RETRY_LAST).

My benchmark suite is good, yours is bad

Fix memory leak in pdfjs.js. #42

Itratt wants to merge 2 commits into chromium:master from ltratt:master g

¢& Conversation 7 o Commits 2 & Checks 0 Files changed 1

ra

Itratt commented on Oct 2, 2016 « edited ~

A large amount of data is pushed into the global variable canvas_logs which isn't
cleared in runPdfJS. On each iteration the list grows, eventually significantly so.

On a Linux machine with a recent-ish V8, it manages 2777 iterations before an allocation
fails (at which point it's allocated over 2GiB of virtual memory, and used about 1.4Gib) and
V8 crashes (Fatal error in CALL_AND_RETRY_LAST).

natorion commented on Feb 7, 2018 » edited ~

It won't be merged. Octane is retired and no longer maintained. Sorry for the long
communication cycle.

-] natorion closed this on Feb 7, 2018

My benchmark suite is good, yours is bad

A year with Spectre: a V8 perspective
Published 23 April 2019 - tagged with security

On January 3, 2018, Google Project Zero and others disclosed the first three of a new class of
vulnerabilities that affect CPUs that perform speculative execution, dubbed Spectre and Meltdown. Using
the speculative execution mechanisms of CPUs, an attacker could temporarily bypass both implicit and
explicit safety checks in code that prevent programs from reading unauthorized data in memory. While
processor speculation was designed to be a microarchitectural detail, invisible at the architectural level,
carefully crafted programs could read unauthorized information in speculation and disclose it through side
channels such as the execution time of a program fragment.

We have experimented with (1) by inserting the recommended speculation barrier instructions, such as
Intel's LFENCE, on every critical conditional branch, and by using retpolines for indirect branches.
Unfortunately, such heavy-handed mitigations greatly reduce performance (2—-3x slowdown on the Octane

benchmark). Instead, we chose approach (2), inserting mitigation sequences that prevent reading secret

data due to mis-speculation. Let us illustrate the technique on the following code snippet:

My benchmark suite is good, yours is bad

A year with Spectre: a V8 perspective
Published 23 April 2019 - tagged with security

On January 3, 2018, Google Project Zero and others disclosed the first three of a new class of
vulnerabilities that affect CPUs that perform speculative execution, dubbed Spectre and Meltdown. Using
the speculative execution mechanisms of CPUs, an attacker could temporarily bypass both implicit and
explicit safety checks in code that prevent programs from reading unauthorized data in memory. While
processor speculation was designed to be a microarchitectural detail, invisible at the architectural level,
carefully crafted programs could read unauthorized information in speculation and disclose it through side
channels such as the execution time of a program fragment.

We have experimented with (1) by inserting the recommended speculation barrier instructions, such as
Intel's LFENCE, on every critical conditional branch, and by using retpolines for indirect branches.
Unfortunately, such heavy-handed mitigations greatly reduce performance (2—-3x slowdown on the Octane

benchmark). Instead, we chose approach (2), inserting mitigation sequences that prevent reading secret

data due to mis-speculation. Let us illustrate the technique on the following code snippet:

My benchmark suite is good, yours is bad

My benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

My benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

My benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!

Managed languages are safe

Managed languages are safe

Vulnerabilities By Year Vulnerabilities By Type

20101

20113

M 2012 59
2013 180
2014 115

M Execute Code 17

M Denial of Service 41
Bypass Something 35

I Overflow 6

B Memory Corruption 4

2015 80
M 2016 37
M 2017 69
112018 56

2019 17

HWXSS1
Gain Information 7
M Gain Privilege 1

Source: https://www.cvedetails.com/product/19117/Oracle-JRE.htmlI?vendor_id=93

Managed languages are safe

C/C++ aren't very safe

Managed languages are safe

C/C++ aren't very safe

And what about JITted code?

Managed languages are safe

C/C++ aren't very safe

And what about JITted code?

Prediction: VM security apocalypse is possible

We're stuck with C/C++

We're stuck with C/C++

What about Rust?

We're stuck with C/C++

What about Rust?

Not an obvious fit for VMs

We're stuck with C/C++

What about Rust?

Not an obvious fit for VMs

Can we make it so?

Thin pointers for dynamic dispatch

VMs use dynamic dispatch extensively

Thin pointers for dynamic dispatch

VMs use dynamic dispatch extensively

use std::mem::size_of;
trait T { }

fn main () {
assert_eq! (size_of::<&bool> ()
assert_eq! (size_of::<&bool> ()

14
assert_eq! (size_of::<&dyn T> (),
}

size_of::<&ul28>());

’

size_of::<usize>());

size_of::<usize> () * 2);

Thin pointers for dynamic dispatch

let x: &dyn T = ...;
let (ptr, vtable) = unsafe {
mem: :transmute<_, (xmut u8, *mut u8)>(x)

}i

Thin pointers for dynamic dispatch

#[repr(C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn new<U>(o: U) —-> ThinPtr
where xconst U: CoerceUnsized<xconst (dyn T + ’static)>,
U: T + ’static

let (dataptr, vtable) = unsafe { mem::transmute<_, (xmut u8, xmut u8)>(x)
let objptr = malloc(size_of::<smut u8>() + size_of::<U>());
unsafe { ptr::write(objptr, &vtable, size_of::<xmut u8>()) };

unsafe { ptr::write(objptr + 1, ptr, size_of::<U>()) };
ThinPtr { objptr }

impl Deref for ThinPtr ({
type Target = dyn T;
fn deref (&self) -> &(dyn T + ’static) {
let vtable = unsafe { ptr::read(objptr, size_of::<xmut u8>()) };
unsafe { transmute::<(xconst _, =xconst _), _>((self.objptr + 1, vtable)) }

Thin pointers for dynamic dispatch

[repr (C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn try_downcast<U: T> (&self) -> Option<&U> {
let t_vtable = unsafe {

transmute::<&dyn T, (*mut u8, xmut u8)>(ptr::null() as xconst U) };
let vtable = unsafe { ptr::read(objptr, size_of::<xmut u8>()) };
if vtable == t_vtable {

Some (unsafe { &* (self.objptr + 1) as xconst U })
} else {

None

Thin pointers for dynamic dispatch

[narrowable_abgc (ThinObj)]
trait Obj { }

struct VMInt { x: u64d }
impl Obj for VMInt { }
fn f(v: ThinObj) {
if let Some (o) = v.try_downcast::<VMInt> () {

println! (o.x);

}

Can we use Rust for VIVIs?

Can we use Rust for VIVIs?

So far, so good

The security landscape is changing

The security landscape is changing

CHERI:

The security landscape is changing

CHERI: capabilities in 128-bit pointers

We're good at explaining what we do

We're good at explaining what we do

lIronPython; Jython; Nuitka; Psyco; PyPy; Pyston; Shed
Skin; Stackless; Starkiller; TrufflePython; Unladen
Swallow; WPython; Zippy

We're good at explaining what we do

lIronPython; Jython; Nuitka; Psyco; PyPy; Pyston; Shed
Skin; Stackless; Starkiller; TrufflePython; Unladen
Swallow; WPython; Zippy

e.g. compiling to LLVM fails every time...

We're good at explaining what we do

We often pretend trade-offs don't exist

We're good at explaining what we do

We often pretend trade-offs don't exist

Huge burden for newcomers to the field

Where can we go next?

Where can we go next?

We understand less than we should

Where can we go next?

Clear problems

Where can we go next?

Opportunities!

Where can we go next?

Opportunities!

Hardware meta-tracing

Meta-tracing JITs

FL Interpreter

program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point (program_counter)

instr = load_instruction(program_counter)

AiE AdmsiceE INSTR_VAR_GET:

stack.push (
vars[read_var_name_from instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:
vars[read_var_name_from_instruction ()]
= stack.pop ()
program_counter += 1
elif instr INSTR_INT:
stack.push(read_int_from instruction())
program_counter += 1
elif instr INSTR_LESS_THAN:
rhs = stack.pop ()
lhs = stack.pop ()
if isinstance(lhs,
if lhs < rhs:
stack.push (True)
else:
stack.push (False)
else:
program_counter += 1

int) and isinstance (rhs,

elif instr == INSTR_IF:
result = stack.pop ()
iiE rrmuliE == TEweg

program_counter += 1
else:
program_counter +=

read_jump_if_instruction ()

elif instr == INSTR_ADD:
lhs stack.pop ()
rhs stack.pop ()

if isinstance(lhs, int)
and isinstance(rhs, int):
stack.push(lhs + rhs)

XS EE]

program_counter += 1

int) :

Meta-tracing JITs

FL Interpreter

program_counter = 0; stack = []
vars = {...}
while True:
jit_merge_point (program_counter
instr = load_instruction(program_counter
if instr == INSTR VAR _GET:
stack.push (
vars[read_var_name_from instruction()])
program_counter += 1
elif instr == INSTR_VAR_SET:
vars[read_var_name_from_instruction()]
= stack.pop ()
program_counter += 1
elif instr == INSTR_INT:
stack.push(read_int_from instruction())
program_counter += 1
elif instr == INSTR_LESS_THAN:
rhs = stack.pop ()
lhs stack.pop ()
if isinstance(lhs, int) and isinstance (rhs, int):
if lhs < rhs:
stack.push (True)
else:
stack.push (False)
ElEEg
program_counter += 1

Meta-tracing JITs

FL Interpreter User program (lang FL)

program_counter = 0; stack = [] if x < 0:

vars = {...} x=x+1

while True: else:
jit_merge_point (program_counter) X =x + 2
instr = load_instruction(program_counter) X =x + 3
if instr == INSTR VAR _GET:

stack.push (
vars[read_var_name_from instruction()])
program_counter += 1
elif instr == INSTR_VAR_SET:
vars[read_var_name_from_instruction()]
= stack.pop ()
program_counter += 1
elif instr == INSTR_INT:
stack.push(read_int_from instruction())
program_counter += 1
elif instr == INSTR_LESS_THAN:
rhs = stack.pop ()
lhs stack.pop ()
if isinstance(lhs, int) and isinstance (rhs, int):
if lhs < rhs:
stack.push (True)
else:
stack.push (False)
ElEEg
program_counter += 1

Meta-tracing JITs

FL Interpreter

Initial trace

program_counter = 0; stack =
vars = {...}
while True:
jit_merge_point (program_co
instr = load_instruction(p
if instr == INSTR VAR _GET:
stack.push (
vars[read_var_name_from
program_counter += 1
elif instr == INSTR_VAR_SE

(1

unter)
rogram_counter)

_instruction()])

g

vars [read_var_name_from_instruction()]

= stack.pop ()
program_counter += 1
elif instr == INSTR_INT:
stack.push(read_int_from
program_counter += 1
elif instr == INSTR_LESS_T
rhs = stack.pop ()
lhs stack.pop ()
if isinstance(lhs, int)
if lhs < rhs:
stack.push (True)
else:
stack.push (False)
else:
program_counter += 1

_instruction())

HAN:

and isinstance (rhs,

int) :

v0 = <program_counter>

vl = <stack>

v2 = <vars>

v3 = load_instruction (v0)
guard_eq(v3, INSTR_VAR_GET)
v4 = dict_get (v2, "x")
list_append(vl, v4)

v5 = add(v0, 1)

v6 = load_instruction (v5)
guard_eq(v6, INSTR_INT)
list_append(vl, 0)

v7 = add(v5, 1)

v8 = load_instruction(v7)
guard_eq(v8, INSTR_LESS_THAN)
v9 = list_pop (vl)

v10 = list_pop (vl)
guard_type (v9, int)
guard_type (v10, int)
guard_not_less_than(v9, v10)
list_append(vl, False)

v1ll = add(v7, 1)

v12 = load_instruction(vll)
guard_eq(vl2, INSTR_IF)
v13 = list_pop (vl)
guard_false (v13)

Interpreter

Meta-tracer: states

Meta-tracer: states

Hot

7 O\

Interpreter

Meta-tracer: states

Hot

7\

Interpreter Tracer

Meta-tracer: states

Hot

7\

Interpreter

Tracer

Compile

Meta-tracer: states

Hot

7\

Interpreter

Tracer

Compile

Machine
code

Meta-tracer: states

Hot

7\

Interpreter

Tracer

Compile

Machine
code

Meta-tracer: states

Hot

7\

Interpreter

Tracer

Blackhole
interpreter

Compile

Machine
code

Meta-tracer: states

Compile

/H_O\

Machine

Interpreter Tracer il

Ny Q&q’
?, R
Soon Blackhole = 3

interpreter

Meta-tracer performance (now)

Compile

/H_O\

Machine

Interpreter
] Tracer g

Ny Q&q’
?, R
Soon Blackhole = 3

interpreter

Meta-tracer performance (now)

Compile

/H_O\

Machine

Interpreter
] Tracer g

Ny Q&q’
?, R
Soon Blackhole = 3

interpreter

Meta-tracer performance (now)

Compile

/H_O\

Machine

Interpreter
] Tracer g

Ny Q&q’
?, R
Soon Blackhole = 3

interpreter

\Veta-tracer performance (Rust + PT)

CoMpifa

/H_O\

Machine

IEIEE
p Tracer code

) &
% N
Soon Blackhole =

interpreter

Status:

Status: hello world

Thanks

e EPSRC: COOLER and Lecture.
e Oracle.
e Cloudflare.

0.27393

0.26168

0.24943

0.24331

0.23718

»

Perfection

Thanks for: listening A

Completeness

Time

Y

Richards, HotSpot, Linuxes - 12405, Proc. exec. #8 (slowdown)

801 1001 1201
In-process iteration

1401 1601

1801

Time (secs)

2000

v
o
=
I}
=
£

]
=
7}

o

m20101
011 3

?
?

Other3

Otherl
Other2

Me

M Execute Code 17
 Denial of Service 41
Bypass Something 35
¥ Overflow 6
M Memory Corruption 4
WXSS1
Gain Information 7
M Gain Privilege 1

