
Between the Lines: VM Assumptions

Laurence Tratt
https://tratt.net/laurie/

2020-11-05



What happens if we’re wrong?



VM development is a destinationVM development is a destination



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s



VM development is a destinationVM development is a destination

Time

C
om

pl
et

en
es

s

Perfection



VM development is a destinationVM development is a destination



VM development is a destinationVM development is a destination

VM development is a never-ending process



We know where the performance ceiling isWe know where the performance ceiling is



We know where the performance ceiling isWe know where the performance ceiling is

What is the best possible performance
for an input P?



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1

Other2



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1

Other2

Other3



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1

Other2

Other3

?



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1

Other2

Other3

?
?



We know where the performance ceiling isWe know where the performance ceiling is

P
er

fo
rm

an
ce

Me

Other1
Other2

Other3

?



We know where the performance ceiling isWe know where the performance ceiling is

We don’t know how well we’re doing



We’re good at optimising abstractionsWe’re good at optimising abstractions

Most optimisations are ad-hoc and/or unpredictable

e.g. mono→ poly→megamorphic JS calls



We’re good at optimising abstractionsWe’re good at optimising abstractions

Most optimisations are ad-hoc and/or unpredictable

e.g. mono→ poly→megamorphic JS calls



We’re good at optimising abstractionsWe’re good at optimising abstractions

Most optimisations are ad-hoc and/or unpredictable

e.g. mono→ poly→megamorphic JS calls



We’re good at optimising abstractionsWe’re good at optimising abstractions

How to communicate optimisations to users?



We know what the impact of individual features isWe know what the impact of individual features is

What is the effect of e.g. pointer tagging?

GC and register allocation only
fairly deeply studied topics?



We know what the impact of individual features isWe know what the impact of individual features is

What is the effect of e.g. pointer tagging?

GC and register allocation only
fairly deeply studied topics?



We know what the impact of individual features isWe know what the impact of individual features is

What is the effect of e.g. pointer tagging?

GC and register allocation only
fairly deeply studied topics?



We know what the impact of individual features isWe know what the impact of individual features is

Hardware

: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches

, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors

,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature

, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS

: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes

, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches

,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM

: compilation heuristics,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics

,
GC heuristics, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics

, etc.



We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know how features interactWe know how features interact

Performance non-determinism is rife



Performance non-determinismPerformance non-determinism

t



Performance non-determinismPerformance non-determinism

t



Performance non-determinismPerformance non-determinism

t

t



Performance non-determinismPerformance non-determinism

t

t

t



Performance non-determinismPerformance non-determinism

t

t

t



Performance non-determinismPerformance non-determinism

Solution to performance non-determinism:
non-determinism?



Performance non-determinismPerformance non-determinism

Solution to performance non-determinism:
non-determinism?



We understand how large systems performWe understand how large systems perform

Microbenchmarks behave poorly



We understand how large systems performWe understand how large systems perform

Microbenchmarks behave poorly



We understand how large systems performWe understand how large systems perform

Microbenchmarks behave poorly



We understand how large systems performWe understand how large systems perform

But that doesn’t affect real programs



We understand how large systems performWe understand how large systems perform

How convenient!



We understand how large systems performWe understand how large systems perform

What about compositionality?



Multi-language VMsMulti-language VMs

VMs are expensive to create

Why not reuse that hard work?

CPython vs. Jython parable



Multi-language VMsMulti-language VMs

VMs are expensive to create

Why not reuse that hard work?

CPython vs. Jython parable



Multi-language VMsMulti-language VMs

VMs are expensive to create

Why not reuse that hard work?

CPython vs. Jython parable



Multi-language VMsMulti-language VMs

VMs are expensive to create

Why not reuse that hard work?

CPython vs. Jython parable



Semantic mismatchSemantic mismatch



Semantic mismatchSemantic mismatch

Generic Specific



Semantic mismatchSemantic mismatch

Generic Specific

x86



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecode



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecode



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecodeContinuations



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecodeFeaturen



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecode



Semantic mismatchSemantic mismatch

Generic Specific

x86
Python

bytecode
JVM

bytecode



Semantic mismatchSemantic mismatch

One solution: language design tweaks



Semantic mismatchSemantic mismatch

WASM will not solve the semantic mismatch

Meta-VMs suffer much less



Semantic mismatchSemantic mismatch

WASM will not solve the semantic mismatch

Meta-VMs suffer much less



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!



My benchmark suite is good, yours is badMy benchmark suite is good, yours is bad

Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!



Managed languages are safeManaged languages are safe



Managed languages are safeManaged languages are safe

Source: https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93



Managed languages are safeManaged languages are safe

C/C++ aren’t very safe

And what about JITted code?

Prediction: VM security apocalypse is possible



Managed languages are safeManaged languages are safe

C/C++ aren’t very safe

And what about JITted code?

Prediction: VM security apocalypse is possible



Managed languages are safeManaged languages are safe

C/C++ aren’t very safe

And what about JITted code?

Prediction: VM security apocalypse is possible



We’re stuck with C/C++We’re stuck with C/C++

What about Rust?

Not an obvious fit for VMs

Can we make it so?



We’re stuck with C/C++We’re stuck with C/C++

What about Rust?

Not an obvious fit for VMs

Can we make it so?



We’re stuck with C/C++We’re stuck with C/C++

What about Rust?

Not an obvious fit for VMs

Can we make it so?



We’re stuck with C/C++We’re stuck with C/C++

What about Rust?

Not an obvious fit for VMs

Can we make it so?



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

VMs use dynamic dispatch extensively

use std::mem::size_of;

trait T { }

fn main() {
assert_eq!(size_of::<&bool>(), size_of::<&u128>());
assert_eq!(size_of::<&bool>(), size_of::<usize>());
assert_eq!(size_of::<&dyn T>(), size_of::<usize>() * 2);

}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

VMs use dynamic dispatch extensively

use std::mem::size_of;

trait T { }

fn main() {
assert_eq!(size_of::<&bool>(), size_of::<&u128>());
assert_eq!(size_of::<&bool>(), size_of::<usize>());
assert_eq!(size_of::<&dyn T>(), size_of::<usize>() * 2);

}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

let x: &dyn T = ...;
let (ptr, vtable) = unsafe {

mem::transmute<_, (*mut u8, *mut u8)>(x)
};



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

#[repr(C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn new<U>(o: U) -> ThinPtr

where *const U: CoerceUnsized<*const (dyn T + ’static)>,
U: T + ’static

{
let (dataptr, vtable) = unsafe { mem::transmute<_, (*mut u8, *mut u8)>(x) };
let objptr = malloc(size_of::<*mut u8>() + size_of::<U>());
unsafe { ptr::write(objptr, &vtable, size_of::<*mut u8>()) };
unsafe { ptr::write(objptr + 1, ptr, size_of::<U>()) };
ThinPtr { objptr }

}
}

impl Deref for ThinPtr {
type Target = dyn T;
fn deref(&self) -> &(dyn T + ’static) {

let vtable = unsafe { ptr::read(objptr, size_of::<*mut u8>()) };
unsafe { transmute::<(*const _, *const _), _>((self.objptr + 1, vtable)) }

}
}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

#[repr(C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn try_downcast<U: T>(&self) -> Option<&U> {
let t_vtable = unsafe {

transmute::<&dyn T, (*mut u8, *mut u8)>(ptr::null() as *const U) };
let vtable = unsafe { ptr::read(objptr, size_of::<*mut u8>()) };
if vtable == t_vtable {

Some(unsafe { &* (self.objptr + 1) as *const U })
} else {

None
}

}
}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

#[narrowable_abgc(ThinObj)]
trait Obj { }

struct VMInt { x: u64 }

impl Obj for VMInt { }

fn f(v: ThinObj) {
if let Some(o) = v.try_downcast::<VMInt>() {

println!(o.x);
}

}



Can we use Rust for VMs?Can we use Rust for VMs?

So far, so good



Can we use Rust for VMs?Can we use Rust for VMs?

So far, so good



The security landscape is changingThe security landscape is changing

CHERI: capabilities in 128-bit pointers



The security landscape is changingThe security landscape is changing

CHERI:

capabilities in 128-bit pointers



The security landscape is changingThe security landscape is changing

CHERI: capabilities in 128-bit pointers



We’re good at explaining what we doWe’re good at explaining what we do

IronPython; Jython; Nuitka; Psyco; PyPy; Pyston; Shed
Skin; Stackless; Starkiller; TrufflePython; Unladen

Swallow; WPython; Zippy

e.g. compiling to LLVM fails every time...



We’re good at explaining what we doWe’re good at explaining what we do

IronPython; Jython; Nuitka; Psyco; PyPy; Pyston; Shed
Skin; Stackless; Starkiller; TrufflePython; Unladen

Swallow; WPython; Zippy

e.g. compiling to LLVM fails every time...



We’re good at explaining what we doWe’re good at explaining what we do

IronPython; Jython; Nuitka; Psyco; PyPy; Pyston; Shed
Skin; Stackless; Starkiller; TrufflePython; Unladen

Swallow; WPython; Zippy

e.g. compiling to LLVM fails every time...



We’re good at explaining what we doWe’re good at explaining what we do

We often pretend trade-offs don’t exist

Huge burden for newcomers to the field



We’re good at explaining what we doWe’re good at explaining what we do

We often pretend trade-offs don’t exist

Huge burden for newcomers to the field



Where can we go next?Where can we go next?



Where can we go next?Where can we go next?

We understand less than we should



Where can we go next?Where can we go next?

Clear problems



Where can we go next?Where can we go next?

Opportunities!

Rethinking VMs



Where can we go next?Where can we go next?

Opportunities!

Hardware meta-tracing



Meta-tracing JITsMeta-tracing JITs

FL Interpreter
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

elif instr == INSTR_IF:
result = stack.pop()
if result == True:
program_counter += 1

else:
program_counter +=
read_jump_if_instruction()

elif instr == INSTR_ADD:
lhs = stack.pop()
rhs = stack.pop()
if isinstance(lhs, int)
and isinstance(rhs, int):
stack.push(lhs + rhs)

else: ...
program_counter += 1



Meta-tracing JITsMeta-tracing JITs

FL Interpreter
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1



Meta-tracing JITsMeta-tracing JITs

FL Interpreter User program (lang FL)
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

if x < 0:
x = x + 1

else:
x = x + 2

x = x + 3



Meta-tracing JITsMeta-tracing JITs

FL Interpreter Initial trace
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

v0 = <program_counter>
v1 = <stack>
v2 = <vars>
v3 = load_instruction(v0)
guard_eq(v3, INSTR_VAR_GET)
v4 = dict_get(v2, "x")
list_append(v1, v4)
v5 = add(v0, 1)
v6 = load_instruction(v5)
guard_eq(v6, INSTR_INT)
list_append(v1, 0)
v7 = add(v5, 1)
v8 = load_instruction(v7)
guard_eq(v8, INSTR_LESS_THAN)
v9 = list_pop(v1)
v10 = list_pop(v1)
guard_type(v9, int)
guard_type(v10, int)
guard_not_less_than(v9, v10)
list_append(v1, False)
v11 = add(v7, 1)
v12 = load_instruction(v11)
guard_eq(v12, INSTR_IF)
v13 = list_pop(v1)
guard_false(v13)
...



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer statesMeta-tracer states

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint



Meta-tracer performance (now)Meta-tracer performance (now)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x



Meta-tracer performance (now)Meta-tracer performance (now)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x 0.1x



Meta-tracer performance (now)Meta-tracer performance (now)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x 0.1x200x



Meta-tracer performance (Rust + PT)Meta-tracer performance (Rust + PT)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x 0.1x2x



Status:

hello world



Status: hello world



ThanksThanks

• EPSRC: COOLER and Lecture.
• Oracle.
• Cloudflare.



Thanks for listeningThanks for listening

Time

C
om

pl
et

en
es

s

Perfection

P
er

fo
rm

an
ce

Me

Other1

Other2

Other3

?
?


