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What happens if we’re wrong?
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VM development is a destinationVM development is a destination



VM development is a destinationVM development is a destination

VM development is a never-ending process
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What is the best possible performance
for an input P?
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We know where the performance ceiling isWe know where the performance ceiling is

We don’t know how well we’re doing
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We’re good at optimising abstractionsWe’re good at optimising abstractions

How to communicate optimisations to users?
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We know what the impact of individual features isWe know what the impact of individual features is

Hardware: caches, predictors,
temperature, etc.

OS: other processes, context switches,
etc.

VM: compilation heuristics,
GC heuristics, etc.



We know how features interactWe know how features interact

Performance non-determinism is rife
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We understand how large systems performWe understand how large systems perform

But that doesn’t affect real programs



We understand how large systems performWe understand how large systems perform

How convenient!



We understand how large systems performWe understand how large systems perform

What about compositionality?
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Semantic mismatchSemantic mismatch

One solution: language design tweaks
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Benchmark suites a finite representation of infinite
behaviour

All benchmark suites are imperfect

We need more and more benchmarks!
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Source: https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
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mem::transmute<_, (*mut u8, *mut u8)>(x)
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#[repr(C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn new<U>(o: U) -> ThinPtr

where *const U: CoerceUnsized<*const (dyn T + ’static)>,
U: T + ’static

{
let (dataptr, vtable) = unsafe { mem::transmute<_, (*mut u8, *mut u8)>(x) };
let objptr = malloc(size_of::<*mut u8>() + size_of::<U>());
unsafe { ptr::write(objptr, &vtable, size_of::<*mut u8>()) };
unsafe { ptr::write(objptr + 1, ptr, size_of::<U>()) };
ThinPtr { objptr }

}
}

impl Deref for ThinPtr {
type Target = dyn T;
fn deref(&self) -> &(dyn T + ’static) {

let vtable = unsafe { ptr::read(objptr, size_of::<*mut u8>()) };
unsafe { transmute::<(*const _, *const _), _>((self.objptr + 1, vtable)) }

}
}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

#[repr(C)]
struct ThinPtr { objptr: *mut u8 }

impl ThinPtr {
fn try_downcast<U: T>(&self) -> Option<&U> {
let t_vtable = unsafe {

transmute::<&dyn T, (*mut u8, *mut u8)>(ptr::null() as *const U) };
let vtable = unsafe { ptr::read(objptr, size_of::<*mut u8>()) };
if vtable == t_vtable {

Some(unsafe { &* (self.objptr + 1) as *const U })
} else {

None
}

}
}



Thin pointers for dynamic dispatchThin pointers for dynamic dispatch

#[narrowable_abgc(ThinObj)]
trait Obj { }

struct VMInt { x: u64 }

impl Obj for VMInt { }

fn f(v: ThinObj) {
if let Some(o) = v.try_downcast::<VMInt>() {

println!(o.x);
}

}
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e.g. compiling to LLVM fails every time...
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Where can we go next?Where can we go next?

We understand less than we should



Where can we go next?Where can we go next?

Clear problems
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Rethinking VMs



Where can we go next?Where can we go next?

Opportunities!

Hardware meta-tracing



Meta-tracing JITsMeta-tracing JITs

FL Interpreter
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

elif instr == INSTR_IF:
result = stack.pop()
if result == True:
program_counter += 1

else:
program_counter +=
read_jump_if_instruction()

elif instr == INSTR_ADD:
lhs = stack.pop()
rhs = stack.pop()
if isinstance(lhs, int)
and isinstance(rhs, int):
stack.push(lhs + rhs)

else: ...
program_counter += 1
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Meta-tracing JITsMeta-tracing JITs

FL Interpreter User program (lang FL)
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

if x < 0:
x = x + 1

else:
x = x + 2

x = x + 3



Meta-tracing JITsMeta-tracing JITs

FL Interpreter Initial trace
program_counter = 0; stack = []
vars = {...}
while True:

jit_merge_point(program_counter)
instr = load_instruction(program_counter)
if instr == INSTR_VAR_GET:

stack.push(
vars[read_var_name_from_instruction()])

program_counter += 1
elif instr == INSTR_VAR_SET:

vars[read_var_name_from_instruction()]
= stack.pop()

program_counter += 1
elif instr == INSTR_INT:

stack.push(read_int_from_instruction())
program_counter += 1

elif instr == INSTR_LESS_THAN:
rhs = stack.pop()
lhs = stack.pop()
if isinstance(lhs, int) and isinstance(rhs, int):

if lhs < rhs:
stack.push(True)

else:
stack.push(False)

else: ...
program_counter += 1

v0 = <program_counter>
v1 = <stack>
v2 = <vars>
v3 = load_instruction(v0)
guard_eq(v3, INSTR_VAR_GET)
v4 = dict_get(v2, "x")
list_append(v1, v4)
v5 = add(v0, 1)
v6 = load_instruction(v5)
guard_eq(v6, INSTR_INT)
list_append(v1, 0)
v7 = add(v5, 1)
v8 = load_instruction(v7)
guard_eq(v8, INSTR_LESS_THAN)
v9 = list_pop(v1)
v10 = list_pop(v1)
guard_type(v9, int)
guard_type(v10, int)
guard_not_less_than(v9, v10)
list_append(v1, False)
v11 = add(v7, 1)
v12 = load_instruction(v11)
guard_eq(v12, INSTR_IF)
v13 = list_pop(v1)
guard_false(v13)
...
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Meta-tracer performance (now)Meta-tracer performance (now)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x 0.1x200x



Meta-tracer performance (Rust + PT)Meta-tracer performance (Rust + PT)

Interpreter Tracer Machine
code

Blackhole
interpreter

Hot Compile

Guard fa
ilu

reSafepoint

1x 0.1x2x
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ThanksThanks

• EPSRC: COOLER and Lecture.
• Oracle.
• Cloudflare.
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